, Volume 21, Issue 3, pp 653–665 | Cite as

Angio-3, a 10-residue peptide derived from human plasminogen kringle 3, suppresses tumor growth in mice via impeding both angiogenesis and vascular permeability

  • Shruthi Venugopal
  • Chieh Kao
  • Ritu Chandna
  • Konerirajapuram N. Sulochana
  • Vivekanandan Subramanian
  • Mo Chen
  • R. Manjunatha Kini
  • Ruowen GeEmail author
Original Paper


Anti-angiogenesis therapy is an established therapeutic strategy for cancer. The endogenous angiogenic inhibitor angiostatin contains the first 3–4 kringle domains of plasminogen and inhibits both angiogenesis and vascular permeability. We present here a 10-residue peptide, Angio-3, derived from plasminogen kringle 3, which retains the functions of angiostatin in inhibiting both angiogenesis and vascular permeability. NMR studies indicate that Angio-3 holds a solution structure similar to the corresponding region of kringle 3. Mechanistically, Angio-3 inhibited both VEGF- and bFGF-induced angiogenesis by inhibiting EC proliferation and migration while inducing apoptosis. Inhibition of VEGF-induced vascular permeability results from its ability to impede VEGF-induced dissociation of adherens junction and tight junction proteins as well as the formation of actin stress fibers. When administered intravenously, Angio-3 inhibited subcutaneous breast cancer and melanoma growth by suppressing both tumor angiogenesis and intra-tumor vascular permeability. Hence, Angio-3 is a novel dual inhibitor of angiogenesis and vascular permeability. It is valuable as a lead peptide that can be further developed as therapeutics for diseases involving excessive angiogenesis and/or vascular permeability.


Angiogenesis Vascular permeability Kringle domain Peptide Plasminogen 



Endothelial cell


Vascular endothelial growth factor


Nuclear magnetic resonance


Kringle 5


Vascular permeability


Human umbilical vein endothelial cells


Human dermal microvascular endothelial cells


Human retinal endothelial cells


Basic fibroblast growth factor



This work is supported by research grants from Singapore Ministry of Education (RP950358 and RP981308) and Singapore National Medical Research Council (CBRG13nov061) to RG.

Author contributions

RG supervised the research; RMK designed the peptide; SV performed most of the experiments with contributions from CK, RC, KNS, VS and MC. VS performed the NMR analysis. SV, CK, KNS, VS and RG wrote the manuscript; All authors read and corrected the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10456_2018_9616_MOESM1_ESM.doc (26 kb)
Supplementary material 1 (DOC 25 KB)
10456_2018_9616_MOESM2_ESM.ppt (692 kb)
Supplementary material 2 (PPT 691 KB)


  1. 1.
    Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674. CrossRefPubMedGoogle Scholar
  2. 2.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kumar S, Rao N, Venugopal S, Ge R (2012) Endogenous angiogenesis inhibitors: is the list ever ending. In: Berhradt LV (ed) Advances in medicine and biology, vol 38. Nova Science Publishers, New York, pp 1–48Google Scholar
  4. 4.
    Vasudev NS, Reynolds AR (2014) Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17(3):471–494. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lu H, Dhanabal M, Volk R, Waterman MJ, Ramchandran R, Knebelmann B, Segal M, Sukhatme VP (1999) Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells. Biochem Biophys Res Commun 258(3):668–673. CrossRefPubMedGoogle Scholar
  6. 6.
    Cao Y, Ji RW, Davidson D, Schaller J, Marti D, Sohndel S, McCance SG, O’Reilly MS, Llinas M, Folkman J (1996) Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J Biol Chem 271(46):29461–29467CrossRefPubMedGoogle Scholar
  7. 7.
    O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328CrossRefPubMedGoogle Scholar
  8. 8.
    Lucas R, Holmgren L, Garcia I, Jimenez B, Mandriota SJ, Borlat F, Sim BK, Wu Z, Grau GE, Shing Y, Soff GA, Bouck N, Pepper MS (1998) Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood 92(12):4730–4741PubMedGoogle Scholar
  9. 9.
    Cao Y, Cao R, Veitonmaki N (2002) Kringle structures and antiangiogenesis. Curr Med Chem Anticancer Agents 2(6):667–681CrossRefPubMedGoogle Scholar
  10. 10.
    O’Reilly MS, Holmgren L, Chen C, Folkman J (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2(6):689–692CrossRefPubMedGoogle Scholar
  11. 11.
    Ji WR, Barrientos LG, Llinas M, Gray H, Villarreal X, DeFord ME, Castellino FJ, Kramer RA, Trail PA (1998) Selective inhibition by kringle 5 of human plasminogen on endothelial cell migration, an important process in angiogenesis. Biochem Biophys Res Commun 247(2):414–419. CrossRefPubMedGoogle Scholar
  12. 12.
    Li L, Yao Y-C, Gu X-Q, Che D, Ma C-Q, Dai Z-Y, Li C, Zhou T, Cai W-B, Yang Z-H (2014) Plasminogen kringle 5 induces endothelial cell apoptosis by triggering a voltage-dependent anion channel 1 (VDAC1) positive feedback loop. J Biol Chem 289(47):32628–32638CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sima J, Ma J, Zhang SX, Guo J (2006) Study of the influence of angiostatin intravitreal injection on vascular leakage in retina and iris of the experimental diabetic rats. Yan Ke Xue Bao 22(4):252–258PubMedGoogle Scholar
  14. 14.
    Sima J, Zhang SX, Shao C, Fant J, Ma JX (2004) The effect of angiostatin on vascular leakage and VEGF expression in rat retina. FEBS Lett 564(1–2):19–23. CrossRefPubMedGoogle Scholar
  15. 15.
    Spranger J, Hammes HP, Preissner KT, Schatz H, Pfeiffer AF (2000) Release of the angiogenesis inhibitor angiostatin in patients with proliferative diabetic retinopathy: association with retinal photocoagulation. Diabetologia 43(11):1404–1407. CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang SX, Sima J, Shao C, Fant J, Chen Y, Rohrer B, Gao G, Ma JX (2004) Plasminogen kringle 5 reduces vascular leakage in the retina in rat models of oxygen-induced retinopathy and diabetes. Diabetologia 47(1):124–131. CrossRefPubMedGoogle Scholar
  17. 17.
    Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7(10):803–815. CrossRefPubMedGoogle Scholar
  18. 18.
    Couffinhal T, Kearney M, Witzenbichler B, Chen D, Murohara T, Losordo DW, Symes J, Isner JM (1997) Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in normal and atherosclerotic human arteries. Am J Pathol 150(5):1673–1685PubMedPubMedCentralGoogle Scholar
  19. 19.
    Joe YA, Hong YK, Chung DS, Yang YJ, Kang JK, Lee YS, Chang SI, You WK, Lee H, Chung SI (1999) Inhibition of human malignant glioma growth in vivo by human recombinant plasminogen kringles 1–3. Int J Cancer 82 (5):694–699CrossRefPubMedGoogle Scholar
  20. 20.
    Yang X, Cai W, Xu Z, Chen J, Li C, Liu S, Yang Z, Pan Q, Li M, Ma J, Gao G (2010) High efficacy and minimal peptide required for the anti-angiogenic and anti-hepatocarcinoma activities of plasminogen K5. J Cell Mol Med 14(10):2519–2530. CrossRefPubMedGoogle Scholar
  21. 21.
    Kini RM, Evans HJ (1995) A hypothetical structural role for proline residues in the flanking segments of protein-protein interaction sites. Biochem Biophys Res Commun 212(3):1115–1124. CrossRefPubMedGoogle Scholar
  22. 22.
    Kini RM, Caldwell RA, Wu QY, Baumgarten CM, Feher JJ, Evans HJ (1998) Flanking proline residues identify the L-type Ca2 + channel binding site of calciseptine and FS2. Biochemistry 37(25):9058–9063. CrossRefPubMedGoogle Scholar
  23. 23.
    Kini RM, Evans HJ (1996) Prediction of potential protein-protein interaction sites from amino acid sequence. Identification of a fibrin polymerization site. FEBS Lett 385(1–2):81–86CrossRefPubMedGoogle Scholar
  24. 24.
    Wickstrom SA, Alitalo K, Keski-Oja J (2004) An endostatin-derived peptide interacts with integrins and regulates actin cytoskeleton and migration of endothelial cells. J Biol Chem 279(19):20178–20185. CrossRefPubMedGoogle Scholar
  25. 25.
    Venugopal S, Chen M, Liao W, Er SY, Wong WS, Ge R (2015) Isthmin is a novel vascular permeability inducer that functions through cell-surface GRP78-mediated Src activation. Cardiovasc Res 107(1):131–142. CrossRefPubMedGoogle Scholar
  26. 26.
    Miles AA, Miles EM (1952) Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea-pigs. J Physiol 118(2):228–257CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Braunschweiler L, Ernst R (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J Magn Reson 53(3):521–528Google Scholar
  28. 28.
    Shaka A, Lee C, Pines A (1988) Iterative schemes for bilinear operators; application to spin decoupling. J Magn Reson 77(2):274–293Google Scholar
  29. 29.
    Goddard T, Kneller D (2008) SPARKY. University of California, San FranciscoGoogle Scholar
  30. 30.
    Wuthrich K (1986) NMR of proteins and nucleic acids. Wiley, New YorkGoogle Scholar
  31. 31.
    DeLano WL (2002) The PyMOL molecular graphics system. Delano Scientific, San CarlosGoogle Scholar
  32. 32.
    Mulichak AM, Tulinsky A, Ravichandran KG (1991) Crystal and molecular structure of human plasminogen kringle 4 refined at 1.9-A resolution. Biochemistry 30(43):10576–10588CrossRefPubMedGoogle Scholar
  33. 33.
    Christen MT, Frank P, Schaller J, Llinas M (2010) Human plasminogen kringle 3: solution structure, functional insights, phylogenetic landscape. Biochemistry 49(33):7131–7150. CrossRefPubMedGoogle Scholar
  34. 34.
    Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273(46):30336–30343CrossRefPubMedGoogle Scholar
  35. 35.
    Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133(1):95–109PubMedPubMedCentralGoogle Scholar
  36. 36.
    Gratton JP, Lin MI, Yu J, Weiss ED, Jiang ZL, Fairchild TA, Iwakiri Y, Groszmann R, Claffey KP, Cheng YC, Sessa WC (2003) Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 4(1):31–39CrossRefPubMedGoogle Scholar
  37. 37.
    Sukriti S, Tauseef M, Yazbeck P, Mehta D (2014) Mechanisms regulating endothelial permeability. Pulm Circ 4(4):535–551. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274(33):23463–23467CrossRefPubMedGoogle Scholar
  39. 39.
    Esser S, Lampugnani MG, Corada M, Dejana E, Risau W (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111(Pt 13):1853–1865PubMedGoogle Scholar
  40. 40.
    Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL (2002) Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 62(15):4263–4272PubMedGoogle Scholar
  41. 41.
    Ahn JH, Yu HK, Lee HJ, Hong SW, Kim SJ, Kim JS (2014) Suppression of colorectal cancer liver metastasis by apolipoprotein(a) kringle V in a nude mouse model through the induction of apoptosis in tumor-associated endothelial cells. PLoS ONE 9(4):e93794. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kim GM, Reid T, Shin SJ, Rha SY, Ahn JB, Lee SS, Chung HC (2017) A phase 1, open label, dose escalation study to investigate the safety, tolerability, and pharmacokinetics of MG1102 (apolipoprotein(a) Kringle V) in patients with solid tumors. Invest New Drugs. PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Ma J, Pulfer S, Li S, Chu J, Reed K, Gallo JM (2001) Pharmacodynamic-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470. Cancer Res 61(14):5491–5498PubMedGoogle Scholar
  44. 44.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62. CrossRefPubMedGoogle Scholar
  45. 45.
    Leenders W, van Altena M, Lubsen N, Ruiter D, De Waal R (2001) In vivo activities of mutants of vascular endothelial growth factor (VEGF) with differential in vitro activities. Int J Cancer 91 (3):327–333CrossRefPubMedGoogle Scholar
  46. 46.
    Wahl ML, Kenan DJ, Gonzalez-Gronow M, Pizzo SV (2005) Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem 96(2):242–261. CrossRefPubMedGoogle Scholar
  47. 47.
    Rodrigues SF, Granger DN (2015) Blood cells and endothelial barrier function. Tissue Barriers 3(1–2):e978720. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bratt A, Birot O, Sinha I, Veitonmaki N, Aase K, Ernkvist M, Holmgren L (2005) Angiomotin regulates endothelial cell-cell junctions and cell motility. J Biol Chem 280(41):34859–34869. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingaporeSingapore

Personalised recommendations