Advertisement

Angiogenesis

, Volume 21, Issue 3, pp 533–543 | Cite as

Characterization of a drug-targetable allosteric site regulating vascular endothelial growth factor signaling

  • Katherine M. Thieltges
  • Dragana Avramovic
  • Chayne L. Piscitelli
  • Sandra Markovic-Mueller
  • Hans Kaspar Binz
  • Kurt Ballmer-Hofer
Original Paper

Abstract

Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel development upon activation of three receptor tyrosine kinases (VEGFRs). The extracellular domain of VEGFRs consists of seven Ig-homology domains, of which D2–3 form the ligand-binding site, while the membrane proximal domains D4–7 are involved in homotypic interactions in ligand-bound receptor dimers. Based on low-resolution structures, we identified allosteric sites in D4–5 and D7 of vascular endothelial growth factor receptor 2 (VEGFR-2) accomplishing regulatory functions. Allosteric inhibition of VEGFR-2 signaling represents an attractive option for the treatment of neovascular diseases. We showed earlier that DARPin® binders to domains D4 or D7 are potent VEGFR-2 inhibitors. Here we investigated in detail the allosteric inhibition mechanism of the domain D4 binding inhibitor D4b. The 2.38 Å crystal structure of D4b in complex with VEGFR-2 D4–5, the first high-resolution structure of this VEGFR-2 segment, indicates steric hindrance by D4b as the mechanism of inhibition of receptor activation. At the cellular level, D4b triggered quantitative internalization of VEGFR-2 in the absence of ligand and thus clearance of VEGFR-2 from the surface of endothelial cells. The allosteric VEGFR-2 inhibition was sufficiently strong to efficiently inhibit the growth of human endothelial cells at suboptimal dose in a mouse xenograft model in vivo, underlining the therapeutic potential of the approach.

Keywords

Angiogenesis VEGF DARPin VEGFR-2 KDR Inhibition Receptor downregulation 

Notes

Acknowledgements

Andreas Cornelius, Johan Abram and Nicole Bassler of Molecular Partners are acknowledged for production and characterization of D4b and HD4b. We thank Drs. Richard Kammerer and Roger Benoit for designing the receptor D4–5 construct, Dr. Aurélien Rizk for advice with Squassh analysis, and Mayanka Asthana for assistance in protein purification. We also thank staff at beamline X06SA at the Swiss Light Source in Villigen Switzerland for help with X-ray data acquisition. This work was supported by grants from Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_152908 to KB-H) and Oncosuisse (KLS-3569-02-2015 to KB-H).

Author contributions

Experiments were conceived, designed and interpreted by HKB, SMM, CLP, DA and KB-H. Experiments were performed by KMT, CLP, DA and SMM. The manuscript was written by KMT, CLP, DA, SMM, HKB and KB-H.

Compliance with ethical standards

Conflict of interest

HKB is shareholder of Molecular Partners AG commercializing the DARPin® Technology. The other authors do not declare competing financial interests.

Supplementary material

10456_2018_9606_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2069 kb)
10456_2018_9606_MOESM2_ESM.pdf (498 kb)
Supplementary material 2 (PDF 498 kb)

References

  1. 1.
    Smith GA, Fearnley GW, Harrison MA, Tomlinson DC, Wheatcroft SB, Ponnambalam S (2015) Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease. J Inherit Metab Dis 38(4):753–763CrossRefPubMedGoogle Scholar
  2. 2.
    Shibuya M (2014) VEGF-VEGFR Signals in Health and Disease. Biomol Ther 22(1):1–9CrossRefGoogle Scholar
  3. 3.
    Moens S, Goveia J, Stapor PC, Cantelmo AR, Carmeliet P (2014) The multifaceted activity of VEGF in angiogenesis—implications for therapy responses. Cytokine Growth Factor Rev 25(4):473–482CrossRefPubMedGoogle Scholar
  4. 4.
    Shibuya M (2013) VEGFR and type-V RTK activation and signaling. Cold Spring Harb Perspect Biol 5(10):a009092CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376(6535):66–70CrossRefPubMedGoogle Scholar
  6. 6.
    Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376(6535):62–66CrossRefPubMedGoogle Scholar
  7. 7.
    Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV, Kubo H, Thurston G, McDonald DM, Achen MG, Stacker SA, Alitalo K (2001) Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 20:1223–1231CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ruch C, Skiniotis G, Steinmetz MO, Walz T, Ballmer-Hofer K (2007) Structure of a VEGF-VEGF receptor complex determined by electron microscopy. Nat Struct Mol Biol 14(3):249–250CrossRefPubMedGoogle Scholar
  10. 10.
    Leppänen VM, Tvorogov D, Kisko K, Prota AE, Jeltsch M, Anisimov A, Markovic-Mueller S, Stuttfeld E, Goldie KN, Ballmer-Hofer K, Alitalo K (2013) Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Proc Natl Acad Sci USA 110(32):12960–12965CrossRefPubMedGoogle Scholar
  11. 11.
    Brozzo MS, Bjelic S, Kisko K, Schleier T, Leppänen VM, Alitalo K, Winkler FK, Ballmer-Hofer K (2012) Thermodynamic and structural description of allosterically regulated VEGF receptor 2 dimerization. Blood 119(7):1781–1788CrossRefPubMedGoogle Scholar
  12. 12.
    Leppänen VM, Prota AE, Jeltsch M, Anisimov A, Kalkkinen N, Strandin T, Lankinen H, Goldman A, Ballmer-Hofer K, Alitalo K (2010) Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc Natl Acad Sci USA 107(6):2425–2430CrossRefPubMedGoogle Scholar
  13. 13.
    Markovic-Mueller S, Stuttfeld E, Asthana M, Weinert T, Bliven S, Goldie KN, Kisko K, Capitani G, Ballmer-Hofer K (2017) Structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A. Structure 25(2):341–352CrossRefPubMedGoogle Scholar
  14. 14.
    Christinger HW, Fuh G, de Vos AM, Wiesmann C (2004) The crystal structure of PlGF in complex with domain 2 of VEGFR1. J Biol Chem 279(11):10382–10388CrossRefPubMedGoogle Scholar
  15. 15.
    Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, de Vos AM (1997) Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91(5):695–704CrossRefPubMedGoogle Scholar
  16. 16.
    Iyer S, Darley PI, Acharya KR (2010) Structural insights into the binding of VEGF-B by VEGFR-1D2: recognition and specificity. J Biol Chem 285(31):23779–23789CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ellis LM (2005) Bevacizumab. Nat Rev Drug Discov 4(Supplement):S8–S9CrossRefGoogle Scholar
  18. 18.
    Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Case history: discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391–400CrossRefPubMedGoogle Scholar
  19. 19.
    Yang Y, Zhang Y, Cao Z, Ji H, Yang X, Iwamoto H, Wahlberg E, Lanne T, Sun B, Cao Y (2013) Anti-VEGF- and anti-VEGF receptor-induced vascular alteration in mouse healthy tissues. Proc Natl Acad Sci USA 110(29):12018–12023CrossRefPubMedGoogle Scholar
  20. 20.
    Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, McDonald DM (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165(1):35–52CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Krupitskaya Y, Wakelee HA (2009) Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr Opin Investig Drugs 10(6):597–605PubMedGoogle Scholar
  22. 22.
    Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9(1):327–337PubMedGoogle Scholar
  23. 23.
    Hyde CA, Giese A, Stuttfeld E, Abram SJ, Villemagne D, Schleier T, Binz HK, Ballmer-Hofer K (2012) Targeting the extracellular domains D4 and D7 of VEGFR-2 reveals allosteric receptor regulatory sites. Mol Cell Biol 32(19):3802–3813CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Steiner D, Merz FW, Sonderegger I, Gulotti-Georgieva M, Villemagne D, Phillips DJ, Forrer P, Stumpp MT, Zitt C, Binz HK (2017) Half-life extension using serum albumin-binding DARPin(R) domains. Protein Eng Des Sel 30(9):583–591CrossRefPubMedGoogle Scholar
  25. 25.
    Winter G (2010) xia2: an expert system for macromolecular crystallography data reduction. J Appl Cryst 43(1):186–190CrossRefGoogle Scholar
  26. 26.
    Waterman DG, Winter G, Parkhurst JM, Fuentes-Montero L, Hattne J, Brewster A, Sauter NK, Evans G (2013) The DIALS framework for integration software. CCP4 Newsl Protein Crystallogr 49:16–19Google Scholar
  27. 27.
    Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62(Pt 1):72–82CrossRefPubMedGoogle Scholar
  28. 28.
    Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr Sect D 69(7):1204–1214CrossRefGoogle Scholar
  29. 29.
    McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40(Pt 4):658–674CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(Pt 2):213–221CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Merz T, Wetzel SK, Firbank S, Pluckthun A, Grutter MG, Mittl PR (2008) Stabilizing ionic interactions in a full-consensus ankyrin repeat protein. J Mol Biol 376(1):232–240CrossRefPubMedGoogle Scholar
  32. 32.
    Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2126–2132CrossRefPubMedGoogle Scholar
  33. 33.
    Rizk A, Mansouri M, Ballmer-Hofer K, Berger P (2015) Subcellular object quantification with Squassh3C and SquasshAnalyst. Biotechniques 59(5):309–312CrossRefPubMedGoogle Scholar
  34. 34.
    Laib AM, Bartol A, Alajati A, Korff T, Weber H, Augustin HG (2009) Spheroid-based human endothelial cell microvessel formation in vivo. Nat Protoc 4(8):1202–1215CrossRefPubMedGoogle Scholar
  35. 35.
    Lichtenbeld HH, Muller AD, van Dam-Mieras MC, Blijham GH (1993) Tumor spheroid-induced vesicle formation on endothelial cells is associated with procoagulant properties. J Cell Sci 106(Pt 2):657–662PubMedGoogle Scholar
  36. 36.
    Alajati A, Laib AM, Weber H, Boos AM, Bartol A, Ikenberg K, Korff T, Zentgraf H, Obodozie C, Graeser R, Christian S, Finkenzeller G, Stark GB, Heroult M, Augustin HG (2008) Spheroid-based engineering of a human vasculature in mice. Nat Methods 5(5):439–445CrossRefPubMedGoogle Scholar
  37. 37.
    Yang Y, Xie P, Opatowsky Y, Schlessinger J (2010) Direct contacts between extracellular membrane-proximal domains are required for VEGF receptor activation and cell signaling. Proc Natl Acad Sci USA 107(5):1906–1911CrossRefPubMedGoogle Scholar
  38. 38.
    Sarabipour S, Ballmer-Hofer K, Hristova K (2016) VEGFR-2 conformational switch in response to ligand binding. Elife 5:e13876CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Friedman LM, Rinon A, Schechter B, Lyass L, Lavi S, Bacus SS, Sela M, Yarden Y (2005) Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc Natl Acad Sci USA 102(6):1915–1920CrossRefPubMedGoogle Scholar
  40. 40.
    Baselga J, Albanell J (2001) Mechanism of action of anti-HER2 monoclonal antibodies. Ann Oncol 12(Suppl 1):S35–S41CrossRefPubMedGoogle Scholar
  41. 41.
    Patel D, Lahiji A, Patel S, Franklin M, Jimenez X, Hicklin DJ, Kang X (2007) Monoclonal antibody cetuximab binds to and down-regulates constitutively activated epidermal growth factor receptor vIII on the cell surface. Anticancer Res 27(5A):3355–3366PubMedGoogle Scholar
  42. 42.
    Drebin JA, Link VC, Stern DF, Weinberg RA, Greene MI (1985) Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 41(3):697–706CrossRefPubMedGoogle Scholar
  43. 43.
    Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A (1989) p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 9(3):1165–1172CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Fan Z, Mendelsohn J (1998) Therapeutic application of anti-growth factor receptor antibodies. Curr Opin Oncol 10(1):67–73CrossRefPubMedGoogle Scholar
  45. 45.
    Zhu W, Okollie B, Artemov D (2007) Controlled internalization of Her-2/neu receptors by cross-linking for targeted delivery. Cancer Biol Ther 6(12):1960–1966CrossRefPubMedGoogle Scholar
  46. 46.
    Bertelsen V, Stang E (2014) The Mysterious Ways of ErbB2/HER2 Trafficking. Membranes (Basel) 4(3):424–446CrossRefGoogle Scholar
  47. 47.
    Tiede C, Bedford R, Heseltine SJ, Smith G, Wijetunga I, Ross R, AlQallaf D, Roberts AP, Balls A, Curd A, Hughes RE, Martin H, Needham SR, Zanetti-Domingues LC, Sadigh Y, Peacock TP, Tang AA, Gibson N, Kyle H, Platt GW, Ingram N, Taylor T, Coletta LP, Manfield I, Knowles M, Bell S, Esteves F, Maqbool A, Prasad RK, Drinkhill M, Bon RS, Patel V, Goodchild SA, Martin-Fernandez M, Owens RJ, Nettleship JE, Webb ME, Harrison M, Lippiat JD, Ponnambalam S, Peckham M, Smith A, Ferrigno PK, Johnson M, McPherson MJ, Tomlinson DC (2017) Affimer proteins are versatile and renewable affinity reagents. Elife.  https://doi.org/10.7554/eLife.24903 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Biomolecular ResearchPaul Scherrer InstitutVilligenSwitzerland
  2. 2.Molecular Partners AGSchlierenSwitzerland
  3. 3.Zymeworks IncVancouverCanada
  4. 4.leadXpro AG, PARK INNOVAAREVilligenSwitzerland

Personalised recommendations