Skip to main content
Log in

Functional characterization of a VEGF-A-targeting Anticalin, prototype of a novel therapeutic human protein class

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Human tear lipocalin (Tlc) was utilized as a protein scaffold to engineer an Anticalin that specifically binds and functionally blocks vascular endothelial growth factor A (VEGF-A), a pivotal inducer of physiological angiogenesis that also plays a crucial role in several neovascular diseases. Starting from a naive combinatorial library where residues that form the natural ligand-binding site of Tlc were randomized, followed by affinity maturation, the final Anticalin PRS-050 was selected to bind all major splice forms of VEGF-A with picomolar affinity. Moreover, this Anticalin cross-reacts with the murine ortholog. PRS-050 efficiently antagonizes the interaction between VEGF-A and its cellular receptors, and it inhibits VEGF-induced mitogenic signaling as well as proliferation of primary human endothelial cells with subnanomolar IC50 values. Intravitreal administration of the Anticalin suppressed VEGF-induced blood–retinal barrier breakdown in a rabbit model. To allow lasting systemic neutralization of VEGF-A in vivo, the plasma half-life of the Anticalin was extended by site-directed PEGylation. The modified Anticalin efficiently blocked VEGF-mediated vascular permeability as well as growth of tumor xenografts in nude mice, concomitantly with reduction in microvessel density. In contrast to bevacizumab, the Anticalin did not trigger platelet aggregation and thrombosis in human FcγRIIa transgenic mice, thus suggesting an improved safety profile. Since neutralization of VEGF-A activity is well known to exert beneficial effects in cancer and other neovascular diseases, including wet age-related macular degeneration, this Anticalin offers a novel potent small protein antagonist for differentiated therapeutic intervention in oncology and ophthalmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774

    Article  PubMed  CAS  Google Scholar 

  2. Reichert JM (2014) Antibodies to watch in 2014. mAbs 6:5–14

    Article  PubMed  PubMed Central  Google Scholar 

  3. Skerra A (2007) Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 18:295–304

    Article  PubMed  CAS  Google Scholar 

  4. Richter A, Eggenstein E, Skerra A (2014) Anticalins: exploiting a non-Ig scaffold with hypervariable loops for the engineering of binding proteins. FEBS Lett 588:213–218

    Article  PubMed  CAS  Google Scholar 

  5. Åkerström B, Borregaard N, Flower DR, Salier J-S (2006) Lipocalins. Landes Bioscience, Georgetown

    Google Scholar 

  6. Skerra A (2000) Lipocalins as a scaffold. Biochim Biophys Acta 1482:337–350

    Article  PubMed  CAS  Google Scholar 

  7. Schiefner A, Skerra A (2015) The menagerie of human lipocalins: a natural protein scaffold for molecular recognition of physiological compounds. Acc Chem Res 48:976–985

    Article  PubMed  CAS  Google Scholar 

  8. Newcomer ME, Jones TA, Aqvist J, Sundelin J, Eriksson U, Rask L, Peterson PA (1984) The three-dimensional structure of retinol-binding protein. EMBO J 3:1451–1454

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043

    Article  PubMed  CAS  Google Scholar 

  10. Fluckinger M, Haas H, Merschak P, Glasgow BJ, Redl B (2004) Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrob Agents Chemother 48:3367–3372

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921

    Article  PubMed  CAS  Google Scholar 

  12. Beste G, Schmidt FS, Stibora T, Skerra A (1999) Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc Natl Acad Sci USA 96:1898–1903

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Schönfeld D, Matschiner G, Chatwell L, Trentmann S, Gille H, Hülsmeyer M, Brown N, Kaye PM, Schlehuber S, Hohlbaum AM, Skerra A (2009) An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies. Proc Natl Acad Sci USA 106:8198–8203

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gebauer M, Schiefner A, Matschiner G, Skerra A (2013) Combinatorial design of an Anticalin directed against the extra-domain B for the specific targeting of oncofetal fibronectin. J Mol Biol 425:780–802

    Article  PubMed  CAS  Google Scholar 

  15. Redl B (2000) Human tear lipocalin. Biochim Biophys Acta 1482:241–248

    Article  PubMed  CAS  Google Scholar 

  16. Breustedt DA, Korndörfer IP, Redl B, Skerra A (2005) The 1.8-Å crystal structure of human tear lipocalin reveals an extended branched cavity with capacity for multiple ligands. J Biol Chem 280:484–493

    Article  PubMed  CAS  Google Scholar 

  17. Breustedt DA, Chatwell L, Skerra A (2009) A new crystal form of human tear lipocalin reveals high flexibility in the loop region and induced fit in the ligand cavity. Acta Crystallogr D Biol Crystallogr 65:1118–1125

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Olwill SA, Joffroy C, Gille H, Vigna E, Matschiner G, Allersdorfer A, Lunde BM, Jaworski J, Burrows JF, Chiriaco C, Christian HJ, Hülsmeyer M, Trentmann S, Jensen K, Hohlbaum AM, Audoly L (2013) A highly potent and specific MET therapeutic protein antagonist with both ligand-dependent and ligand-independent activity. Mol Cancer Ther 12:2459–2471

    Article  PubMed  CAS  Google Scholar 

  19. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  PubMed  CAS  Google Scholar 

  20. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844

    Article  PubMed  CAS  Google Scholar 

  21. Shojaei F, Ferrara N (2007) Antiangiogenesis to treat cancer and intraocular neovascular disorders. Lab Invest 87:227–230

    Article  PubMed  CAS  Google Scholar 

  22. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  PubMed  CAS  Google Scholar 

  23. Nalluri SR, Chu D, Keresztes R, Zhu X, Wu S (2008) Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 300:2277–2285

    Article  PubMed  CAS  Google Scholar 

  24. Scappaticci FA, Skillings JR, Holden SN, Gerber HP, Miller K, Kabbinavar F, Bergsland E, Ngai J, Holmgren E, Wang J, Hurwitz H (2007) Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst 99:1232–1239

    Article  PubMed  Google Scholar 

  25. Rudge JS, Holash J, Hylton D, Russell M, Jiang S, Leidich R, Papadopoulos N, Pyles EA, Torri A, Wiegand SJ, Thurston G, Stahl N, Yancopoulos GD (2007) VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc Natl Acad Sci USA 104:18363–18370

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gerber HP, Wu X, Yu L, Wiesmann C, Liang XH, Lee CV, Fuh G, Olsson C, Damico L, Xie D, Meng YG, Gutierrez J, Corpuz R, Li B, Hall L, Rangell L, Ferrando R, Lowman H, Peale F, Ferrara N (2007) Mice expressing a humanized form of VEGF-A may provide insights into the safety and efficacy of anti-VEGF antibodies. Proc Natl Acad Sci USA 104:3478–3483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Meyer T, Robles-Carrillo L, Robson T, Langer F, Desai H, Davila M, Amaya M, Francis JL, Amirkhosravi A (2009) Bevacizumab immune complexes activate platelets and induce thrombosis in FCGR2A transgenic mice. J Thromb Haemost 7:171–181

    Article  PubMed  CAS  Google Scholar 

  28. Christinger HW, Muller YA, Berleau LT, Keyt BA, Cunningham BC, Ferrara N, de Vos AM (1996) Crystallization of the receptor binding domain of vascular endothelial growth factor. Proteins 26:353–357

    Article  PubMed  CAS  Google Scholar 

  29. Skerra A (2001) ‘Anticalins’: a new class of engineered ligand-binding proteins with antibody-like properties. J Biotechnol 74:257–275

    PubMed  CAS  Google Scholar 

  30. Gille H, Kowalski J, Li B, LeCouter J, Moffat B, Zioncheck TF, Pelletier N, Ferrara N (2001) Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem 276:3222–3230

    Article  PubMed  CAS  Google Scholar 

  31. Miyamoto K, Khosrof S, Bursell SE, Moromizato Y, Aiello LP, Ogura Y, Adamis AP (2000) Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol 156:1733–1739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Tolentino MJ, Miller JW, Gragoudas ES, Jakobiec FA, Flynn E, Chatzistefanou K, Ferrara N, Adamis AP (1996) Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 103:1820–1828

    Article  PubMed  CAS  Google Scholar 

  33. Narayanan R, Kuppermann BD, Jones C, Kirkpatrick P (2006) Ranibizumab. Nat Rev Drug Discov 5:815–816

    Article  PubMed  CAS  Google Scholar 

  34. Bakri SJ, Snyder MR, Reid JM, Pulido JS, Ezzat MK, Singh RJ (2007) Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology 114:2179–2182

    Article  PubMed  Google Scholar 

  35. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476

    Article  PubMed  CAS  Google Scholar 

  36. Kubetzko S, Sarkar CA, Plückthun A (2005) Protein PEGylation decreases observed target association rates via a dual blocking mechanism. Mol Pharmacol 68:1439–1454

    Article  PubMed  CAS  Google Scholar 

  37. Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Mordenti J, Thomsen K, Licko V, Chen H, Meng YG, Ferrara N (1999) Efficacy and concentration-response of murine anti-VEGF monoclonal antibody in tumor-bearing mice and extrapolation to humans. Toxicol Pathol 27:14–21

    Article  PubMed  CAS  Google Scholar 

  39. Muller YA, Chen Y, Christinger HW, Li B, Cunningham BC, Lowman HB, de Vos AM (1998) VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 Å resolution and mutational analysis of the interface. Structure 6:1153–1167

    Article  PubMed  CAS  Google Scholar 

  40. McKenzie SE, Taylor SM, Malladi P, Yuhan H, Cassel DL, Chien P, Schwartz E, Schreiber AD, Surrey S, Reilly MP (1999) The role of the human Fc receptor FcγRIIA in the immune clearance of platelets: a transgenic mouse model. J Immunol 162:4311–4318

    PubMed  CAS  Google Scholar 

  41. Stahl A, Stumpp MT, Schlegel A, Ekawardhani S, Lehrling C, Martin G, Gulotti-Georgieva M, Villemagne D, Forrer P, Agostini HT, Binz HK (2013) Highly potent VEGF-A-antagonistic DARPins as anti-angiogenic agents for topical and intravitreal applications. Angiogenesis 16:101–111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Mordenti J, Cuthbertson RA, Ferrara N, Thomsen K, Berleau L, Licko V, Allen PC, Valverde CR, Meng YG, Fei DT, Fourre KM, Ryan AM (1999) Comparisons of the intraocular tissue distribution, pharmacokinetics, and safety of 125I-labeled full-length and Fab antibodies in rhesus monkeys following intravitreal administration. Toxicol Pathol 27:536–544

    Article  PubMed  CAS  Google Scholar 

  43. Mross K, Richly H, Fischer R, Scharr D, Buchert M, Stern A, Gille H, Audoly LP, Scheulen ME (2013) First-in-human phase I study of PRS-050 (Angiocal), an Anticalin targeting and antagonizing VEGF-A, in patients with advanced solid tumors. PLoS One 8:e83232

    Article  PubMed  PubMed Central  Google Scholar 

  44. EPAR (2006) Avastin: EPAR—Scientific Discussion. European Medicines Agency; http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000582/WC500029262.pdf

  45. Gerber HP, Kowalski J, Sherman D, Eberhard DA, Ferrara N (2000) Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res 60:6253–6258

    PubMed  CAS  Google Scholar 

  46. Liang WC, Wu X, Peale FV, Lee CV, Meng YG, Gutierrez J, Fu L, Malik AK, Gerber HP, Ferrara N, Fuh G (2006) Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem 281:951–961

    Article  PubMed  CAS  Google Scholar 

  47. Yu L, Wu X, Cheng Z, Lee CV, LeCouter J, Campa C, Fuh G, Lowman H, Ferrara N (2008) Interaction between bevacizumab and murine VEGF-A: a reassessment. Invest Ophthalmol Vis Sci 49:522–527

    Article  PubMed  Google Scholar 

  48. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    Article  PubMed  CAS  Google Scholar 

  49. Akeson A, Herman A, Wiginton D, Greenberg J (2010) Endothelial cell activation in a VEGF-A gradient: relevance to cell fate decisions. Microvasc Res 80:65–74

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Finley SD, Engel-Stefanini MO, Imoukhuede PI, Popel AS (2011) Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies. BMC Syst Biol 5:193

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Santora LC, Kaymakcalan Z, Sakorafas P, Krull IS, Grant K (2001) Characterization of noncovalent complexes of recombinant human monoclonal antibody and antigen using cation exchange, size exclusion chromatography, and BIAcore. Anal Biochem 299:119–129

    Article  PubMed  CAS  Google Scholar 

  52. Leal T, Robins HI (2010) Bevacizumab induced reversible thrombocytopenia in a patient with recurrent high-grade glioma: a case report. Cancer Chemother Pharmacol 65:399–401

    Article  PubMed  Google Scholar 

  53. Kumar J, Bhargava M, Aggarwal S (2012) Bevacizumab-induced reversible thrombocytopenia in a patient with adenocarcinoma of colon: rare adverse effect of bevacizumab. Case Rep Oncol Med 2012:695430

    PubMed  PubMed Central  Google Scholar 

  54. Van Walle I, Gansemans Y, Parren PW, Stas P, Lasters I (2007) Immunogenicity screening in protein drug development. Expert Opin Biol Ther 7:405–418

    Article  PubMed  CAS  Google Scholar 

  55. Breustedt DA, Schönfeld DL, Skerra A (2006) Comparative ligand-binding analysis of ten human lipocalins. Biochim Biophys Acta 1764:161–173

    Article  PubMed  CAS  Google Scholar 

  56. Schlehuber S, Beste G, Skerra A (2000) A novel type of receptor protein, based on the lipocalin scaffold, with specificity for digoxigenin. J Mol Biol 297:1105–1120

    Article  PubMed  CAS  Google Scholar 

  57. Kim HJ, Eichinger A, Skerra A (2009) High-affinity recognition of lanthanide(III) chelate complexes by a reprogrammed human lipocalin 2. J Am Chem Soc 131:3565–3576

    Article  PubMed  CAS  Google Scholar 

  58. Skerra A (1994) Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151:131–135

    Article  PubMed  CAS  Google Scholar 

  59. Miles AA, Miles EM (1952) Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea-pigs. J Physiol 118:228–257

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Simpson-Herren L, Lloyd HH (1970) Kinetic parameters and growth curves for experimental tumor systems. Cancer Chemother Rep 54:143–174

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to all current and previous members of the Pieris team, in particular Steffen Schlehuber and Antje Walz, for their contributions and support. We are also grateful to Shane Olwill and Ulrich Moebius for critical reading of the manuscript.

Author contributions

H. G., A. M. H., G. M., M. H., L. P. A. and A. S. designed experiments. H. G., M. H., S. T., G. M., H. J. C. and S. T. performed experiments and analyzed the data. T. M. and A. A. designed, performed and analyzed the experiments in FcγIIa transgenic mice. H. G., A. M. H., L. P. A. and A. S. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriele Matschiner or Arne Skerra.

Ethics declarations

Conflict of interest

G. M. is a full-time employee at Pieris Pharmaceuticals GmbH. H. G., M. H., S. T., H.-J. C., A. M. H. and L. P. A. were full-time employees of Pieris AG. A. S. is founder of Pieris AG and shareholder of Pieris Pharmaceuticals, Inc.

Ethical standards

All experiments described in this manuscript comply with the laws of the USA and the European Union. All animal experiments were reviewed and approved by the responsible animal ethics committees.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gille, H., Hülsmeyer, M., Trentmann, S. et al. Functional characterization of a VEGF-A-targeting Anticalin, prototype of a novel therapeutic human protein class. Angiogenesis 19, 79–94 (2016). https://doi.org/10.1007/s10456-015-9490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-015-9490-5

Keywords

Navigation