, Volume 18, Issue 3, pp 219–232 | Cite as

Large-scale time series microscopy of neovessel growth during angiogenesis

  • Urs UtzingerEmail author
  • Brenda Baggett
  • Jeffrey A. Weiss
  • James B. Hoying
  • Lowell T. Edgar
Original Paper


During angiogenesis, growing neovessels must effectively navigate through the tissue space as they elongate and subsequently integrate into a microvascular network. While time series microscopy has provided insight into the cell activities within single growing neovessel sprouts, less is known concerning neovascular dynamics within a large angiogenic tissue bed. Here, we developed a time-lapse imaging technique that allowed visualization and quantification of sprouting neovessels as they form and grow away from adult parent microvessels in three dimensions over cubic millimeters of matrix volume during the course of up to 5 days on the microscope. Using a new image acquisition procedure and novel morphometric analysis tools, we quantified the elongation dynamics of growing neovessels and found an episodic growth pattern accompanied by fluctuations in neovessel diameter. Average elongation rate was 5 μm/h for individual vessels, but we also observed considerable dynamic variability in growth character including retraction and complete regression of entire neovessels. We observed neovessel-to-neovessel directed growth over tens to hundreds of microns preceding tip-to-tip inosculation. As we have previously described via static 3D imaging at discrete time points, we identified different collagen fibril structures associated with the growing neovessel tip and stalk, and observed the coordinated alignment of growing neovessels in a deforming matrix. Overall analysis of the entire image volumes demonstrated that although individual neovessels exhibited episodic growth and regression, there was a monotonic increase in parameters associated with the entire vascular bed such as total network length and number of branch points. This new time-lapse imaging approach corroborated morphometric changes in individual neovessels described by us and others, as well as captured dynamic neovessel behaviors unique to days-long angiogenesis within the forming neovascular network.


5D imaging Angiogenesis Extracellular matrix Inosculation Matrix remodeling Sprouting Regression Neovessel 



This research was supported by NIH Grants R01HL077683 and S10RR023737. We thank Richard A. Cordova (Ironwood Ridge High School, Tucson Arizona) for registering datasets and selecting regions of interests for visualization. He also contributed to the vessel length measurements. Nathan Galli (SCI Institute, University of Utah) provided the artwork in Fig. 1. The developers of the FluoRender software were supported by National Institutes of Health (NIH) Grant R01GM098151. Carlos Lois (California Institute of Technology) developed the ubiquitous EGFP expressing transgenic rat that was provided by the RRRC (University of Missouri).

Supplementary material

10456_2015_9461_MOESM1_ESM.doc (44 kb)
Online Supplementary Materials Figure and Movie Legends (DOC 44 kb)
10456_2015_9461_MOESM2_ESM.pptx (205 kb)
Supplemental Figure 1 (PPTX 205 kb)
10456_2015_9461_MOESM3_ESM.pptx (69 kb)
Supplemental Figure 2 (PPTX 69 kb)
10456_2015_9461_MOESM4_ESM.pptx (568 kb)
Supplemental Figure 3 (PPTX 568 kb)
10456_2015_9461_MOESM5_ESM.mpg (6.9 mb)
Supplemental Movie 4 (MPG 7050 kb)
Supplemental Movie 5

(MP4 2629 kb)

10456_2015_9461_MOESM7_ESM.mpg (11.1 mb)
Supplemental Movie 6 (MPG 11416 kb)
10456_2015_9461_MOESM8_ESM.pptx (2.1 mb)
Supplemental Figure 7A (PPTX 2115 kb)
10456_2015_9461_MOESM9_ESM.pptx (1.4 mb)
Supplemental Figure 7B (PPTX 1474 kb)
10456_2015_9461_MOESM10_ESM.pptx (1.9 mb)
Supplemental Figure 7C (PPTX 1938 kb)
10456_2015_9461_MOESM11_ESM.pptx (1.2 mb)
Supplemental Figure 7D (PPTX 1258 kb)
10456_2015_9461_MOESM12_ESM.mpg (2.9 mb)
Supplemental Movie 8 (MPG 3020 kb)
10456_2015_9461_MOESM13_ESM.mpg (16.4 mb)
Supplemental Movie 9A (MPG 16790 kb)
10456_2015_9461_MOESM14_ESM.mpg (9.4 mb)
Supplemental Movie 9B (MPG 9604 kb)
10456_2015_9461_MOESM15_ESM.mpg (15.8 mb)
Supplemental Movie 10A (MPG 16142 kb)
10456_2015_9461_MOESM16_ESM.mpg (7.6 mb)
Supplemental Movie 10B (MPG 7812 kb)


  1. 1.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi: 10.1038/nature10144 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G, Medvinsky A, Schulte-Merker S, Gerhardt H (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953PubMedCrossRefGoogle Scholar
  3. 3.
    Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a005058 PubMedCentralPubMedGoogle Scholar
  4. 4.
    Lee PF, Yeh AT, Bayless KJ (2009) Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices. Exp Cell Res 315(3):396–410. doi: 10.1016/j.yexcr.2008.10.040 PubMedCrossRefGoogle Scholar
  5. 5.
    Underwood CJ, Edgar LT, Hoying JB, Weiss JA (2014) Cell-generated traction forces and the resulting matrix deformation modulate microvascular alignment and growth during angiogenesis. Am J Physiol Heart Circ Physiol 307(2):H152–H164. doi: 10.1152/ajpheart.00995.2013 PubMedCrossRefGoogle Scholar
  6. 6.
    Krishnan L, Hoying JB, Nguyen H, Song H, Weiss JA (2007) Interaction of angiogenic microvessels with the extracellular matrix. Am J Physiol Heart Circ Physiol 293(6):H3650–H3658PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Edgar LT, Hoying JB, Utzinger U, Underwood CJ, Krishnan L, Baggett BK, Maas SA, Guilkey JE, Weiss JA (2014) Mechanical interaction of angiogenic microvessels with the extracellular matrix. J Biomech Eng 136(2):021001. doi: 10.1115/1.4026471 PubMedCrossRefGoogle Scholar
  8. 8.
    Edgar LT, Underwood CJ, Guilkey JE, Hoying JB, Weiss JA (2014) Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLoS ONE. doi: 10.1371/journal.pone.0085178 Google Scholar
  9. 9.
    Krishnan L, Underwood CJ, Maas S, Ellis BJ, Kode TC, Hoying JB, Weiss JA (2008) Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc Res 78(2):324–332PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Hoying JB, Boswell CA, Williams SK (1996) Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. Vitro Cell Dev Biol Anim 32(7):409–419CrossRefGoogle Scholar
  11. 11.
    Kirkpatrick ND, Andreou S, Hoying JB, Utzinger U (2007) Live imaging of collagen remodeling during angiogenesis. Am J Physiol Heart Circ Physiol 292(6):H3198–H3206PubMedCrossRefGoogle Scholar
  12. 12.
    Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295(5556):868–872. doi: 10.1126/science.1067081 PubMedCrossRefGoogle Scholar
  13. 13.
    Chang CC, Krishnan L, Nunes SS, Church KH, Edgar LT, Boland ED, Weiss JA, Williams SK, Hoying JB (2012) Determinants of microvascular network topologies in implanted neovasculatures. Arterioscler Thromb Vasc Biol 32(1):5–14. doi: 10.1161/ATVBAHA.111.238725 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Nunes SS, Krishnan L, Gerard CS, Dale JR, Maddie MA, Benton RL, Hoying JB (2010) Angiogenic potential of microvessel fragments is independent of the tissue of origin and can be influenced by the cellular composition of the implants. Microcirculation 17(7):557–567PubMedCentralPubMedGoogle Scholar
  15. 15.
    SCI Institute (2014) FluoRender: an interactive rendering tool for confocal microscopy data visualization. Scientific Computing and Imaging Institute (SCI), Salt Lake CityGoogle Scholar
  16. 16.
    Wan Y, Otsuna H, Chien C-B, Hansen C (2009) An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research. IEEE Trans Vis Comput Graph 15(6):1489–1496PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Edgar LT, Sibole SC, Underwood CJ, Guilkey JE, Weiss JA (2013) A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation. Comput Methods Biomech Biomed Eng 16(7):790–801. doi: 10.1080/10255842.2012.662678 CrossRefGoogle Scholar
  18. 18.
    Williams RM, Zipfel WR, Webb WW (2005) Interpreting second-harmonic generation images of collagen I fibrils. Biophys J 88(2):1377–1386. doi: 10.1529/biophysj.104.047308 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Bal U, Andresen V, Baggett B, Utzinger U (2013) Intravital confocal and two-photon imaging of dual-color cells and extracellular matrix mimics. Microsc Microanal 19(1):201–212. doi: 10.1017/S1431927612014080 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Nunes SS, Greer KA, Stiening CM, Chen HY, Kidd KR, Schwartz MA, Sullivan CJ, Rekapally H, Hoying JB (2010) Implanted microvessels progress through distinct neovascularization phenotypes. Microvasc Res 79(1):10–20PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Nunes SS, Rekapally H, Chang CC, Hoying JB (2011) Vessel arterial-venous plasticity in adult neovascularization. PLoS ONE 6(11):e27332. doi: 10.1371/journal.pone.0027332 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Shepherd BR, Chen HY, Smith CM, Gruionu G, Williams SK, Hoying JB (2004) Rapid perfusion and network remodeling in a microvascular construct after implantation. Arterioscler Thromb Vasc Biol 24(5):898–904. doi: 10.1161/01.ATV.0000124103.86943.1e PubMedCrossRefGoogle Scholar
  23. 23.
    Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130(21):5281–5290. doi: 10.1242/dev.00733 PubMedCrossRefGoogle Scholar
  24. 24.
    Yu PC, Gu SY, Bu JW, Du JL (2010) TRPC1 is essential for in vivo angiogenesis in zebrafish. Circ Res 106(7):1221–1232. doi: 10.1161/Circresaha.109.207670 PubMedCrossRefGoogle Scholar
  25. 25.
    le Noble F, Fleury V, Pries A, Corvol P, Eichmann A, Reneman RS (2005) Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovasc Res 65(3):619–628. doi: 10.1016/j.cardiores.2004.09.018 PubMedCrossRefGoogle Scholar
  26. 26.
    Peebo BB, Fagerholm P, Traneus-Rockert C, Lagali N (2011) Time-lapse in vivo imaging of corneal angiogenesis: the role of inflammatory cells in capillary sprouting. Investig Ophthalmol Vis Sci 52(6):3060–3068. doi: 10.1167/Iovs.10-6101 CrossRefGoogle Scholar
  27. 27.
    Murakami T, Suzuma K, Takagi H, Kita M, Ohashi H, Watanabe D, Ojima T, Kurimoto M, Kimura T, Sakamoto A, Unoki N, Yoshimura N (2006) Time-lapse imaging of vitreoretinal angiogenesis originating from both quiescent and mature vessels in a novel ex vivo system. Investig Ophthalmol Vis Sci 47(12):5529–5536. doi: 10.1167/Iovs.06-0373 CrossRefGoogle Scholar
  28. 28.
    Arima S, Nishiyama K, Ko T, Arima Y, Hakozaki Y, Sugihara K, Koseki H, Uchijima Y, Kurihara Y, Kurihara H (2011) Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 138(21):4763–4776. doi: 10.1242/Dev.068023 PubMedCrossRefGoogle Scholar
  29. 29.
    Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177. doi: 10.1083/jcb.200302047 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Korff T, Augustin HG (1999) Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 112(Pt 19):3249–3258PubMedGoogle Scholar
  31. 31.
    Ma X, Schickel ME, Stevenson MD, Sarang-Sieminski AL, Gooch KJ, Ghadiali SN, Hart RT (2013) Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys J 104(7):1410–1418. doi: 10.1016/j.bpj.2013.02.017 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Edgar LT, Underwood CJ, Guilkey JE, Hoying JB, Weiss JA (2014) Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLoS ONE 9(1):e85178. doi: 10.1371/journal.pone.0085178 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Mammoto T, Mammoto A, Ingber DE (2013) Mechanobiology and developmental control. Annu Rev Cell Dev Biol 29:27–61. doi: 10.1146/annurev-cellbio-101512-122340 PubMedCrossRefGoogle Scholar
  34. 34.
    Ingber DE (2002) Mechanical signalling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91(10):877–887. doi: 10.1161/01.Res.0000039537.73816.E5 PubMedCrossRefGoogle Scholar
  35. 35.
    Cheng G, Liao S, Wong HK, Lacorre DA, di Tomaso E, Au P, Fukumura D, Jain RK, Munn LL (2011) Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood 118(17):4740–4749. doi: 10.1182/blood-2011-02-338426 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840. doi: 10.1182/blood-2009-12-257832 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Urs Utzinger
    • 1
    Email author
  • Brenda Baggett
    • 1
  • Jeffrey A. Weiss
    • 2
  • James B. Hoying
    • 3
  • Lowell T. Edgar
    • 2
  1. 1.Department of Biomedical EngineeringUniversity of ArizonaTucsonUSA
  2. 2.Department of Bioengineering, Scientific Computing and Imaging InstituteUniversity of UtahSalt Lake CityUSA
  3. 3.Division of Cardiovascular Therapeutics, Cardiovascular Innovation InstituteUniversity of LouisvilleLouisvilleUSA

Personalised recommendations