Advertisement

Annals of Global Analysis and Geometry

, Volume 56, Issue 1, pp 97–112 | Cite as

Mass, Kähler manifolds, and symplectic geometry

  • Claude LeBrunEmail author
Article
  • 47 Downloads

Abstract

In the author’s previous joint work with Hein (Commun Math Phys 347:183–221, 2016), a mass formula for asymptotically locally Euclidean Kähler manifolds was proved, assuming only relatively weak fall-off conditions on the metric. However, the case of real dimension 4 presented technical difficulties that led us to require fall-off conditions in this special dimension that are stronger than the Chruściel fall-off conditions that sufficed in higher dimensions. Nevertheless, the present article shows that techniques of four-dimensional symplectic geometry can be used to obtain all the major results of Hein-LeBrun (2016), assuming only Chruściel-type fall-off. In particular, the present article presents a new proof of our Penrose-type inequality for the mass of an asymptotically Euclidean Kähler manifold that only requires this very weak metric fall-off.

Keywords

Mass Asymptotically locally Euclidean Kähler Scalar curvature Symplectic Pseudo-holomorphic curve Penrose inequality 

Notes

Acknowledgements

This paper was largely written during a stay at the École Normale Supérieure in Paris, while the author was on sabbatical leave as a Simons Fellow. It is a particular pleasure to thank Olivier Biquard for his gracious hospitality in Paris, as well as for many stimulating and useful conversations. He would also like to thank the faculty of the ENS for offering such a warm welcome into their idyllic research environment.

References

  1. 1.
    Barth, W., Peters, C., Van de Ven, A.: Compact Complex Surfaces, Vol. 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer, Berlin (1984)Google Scholar
  2. 2.
    Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bray, H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59, 177–267 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Calderbank, D.M.J., Singer, M.A.: Einstein metrics and complex singularities. Invent. Math. 156, 405–443 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chruściel, P.: Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological Properties and Global Structure of Space–Time (Erice, 1985), vol. 138 of NATO Adv. Sci. Inst. Ser. B Phys., Plenum, New York, 1986, pp. 49–59. http://homepage.univie.ac.at/piotr.chrusciel/scans/index.html
  6. 6.
    Gromov, M.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hein, H.-J., LeBrun, C.: Mass in Kähler geometry. Commun. Math. Phys. 347, 183–221 (2016)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hirzebruch, F.: Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen. Math. Ann. 126, 1–22 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Huisken, G., Ilmanen, T.: The Riemannian Penrose inequality. Int. Math. Res. Not. 1997, 1045–1058 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    LeBrun, C.: Counter-examples to the generalized positive action conjecture. Commun. Math. Phys. 118, 591–596 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lee, J., Parker, T.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lerman, E.: Symplectic cuts. Math. Res. Lett. 2, 247–258 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li, T.-J., Liu, A.-K.: The equivalence between \({\rm SW}\) and \({\rm Gr}\) in the case where \(b^+=1\). Int. Math. Res. Not. 1999, 335–345 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    McDuff, D.: The structure of rational and ruled symplectic \(4\)-manifolds. J. Am. Math. Soc. 3, 679–712 (1990)MathSciNetzbMATHGoogle Scholar
  15. 15.
    McDuff, D.: Immersed spheres in symplectic \(4\)-manifolds. Ann. Inst. Fourier (Grenoble) 42, 369–392 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford University Press, New York (1995)zbMATHGoogle Scholar
  17. 17.
    Moser, J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Penrose, R.: Naked singularities. Ann. N. Y. Acad. Sci. 224, 125–134 (1973). Sixth Texas Symposium on Relativistic AstrophysicsCrossRefzbMATHGoogle Scholar
  19. 19.
    Schoen, R., Yau, S.T.: Incompressible minimal surfaces, three-dimensional manifolds with nonnegative scalar curvature, and the positive mass conjecture in general relativity. Proc. Nat. Acad. Sci. USA 75, 2567 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schoen, R.M., Yau, S.T.: Complete manifolds with nonnegative scalar curvature and the positive action conjecture in general relativity. Proc. Nat. Acad. Sci. USA 76, 1024–1025 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Şuvaina, I.: ALE Ricci-flat Kähler metrics and deformations of quotient surface singularities. Ann. Glob. Anal. Geom. 41, 109–123 (2012)CrossRefzbMATHGoogle Scholar
  22. 22.
    Taubes, C.H.: The Seiberg–Witten invariants and symplectic forms. Math. Res. Lett. 1, 809–822 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Taubes, C.H.: The Seiberg–Witten and Gromov invariants. Math. Res. Lett. 2, 221–238 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Thurston, W.P.: The geometry and topology of 3-manifolds. Unpublished Princeton Lecture Notes (1980). http://library.msri.org/books/gt3m/
  25. 25.
    Whitney, H.: Differentiable manifolds. Ann. Math. (2) 37, 645–680 (1936)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wright, E.P.: Quotients of gravitational instantons. Ann. Glob. Anal. Geom. 41, 91–108 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsStony Brook UniversityStony BrookUSA

Personalised recommendations