Annals of Global Analysis and Geometry

, Volume 56, Issue 1, pp 57–86 | Cite as

Stability of constant mean curvature surfaces in three-dimensional warped product manifolds

  • Gregório Silva NetoEmail author


In this paper, we prove that stable, compact without boundary, oriented, nonzero constant mean curvature surfaces in the de Sitter–Schwarzschild and Reissner–Nordstrom manifolds are the slices, provided its mean curvature satisfies some positive lower bound. More generally, we prove that stable, compact without boundary, oriented nonzero constant mean curvature surfaces in a large class of three-dimensional warped product manifolds are embedded topological spheres, provided the mean curvature satisfies a positive lower bound depending only on the ambient curvatures. We conclude the paper proving that a stable, compact without boundary, nonzero constant mean curvature surface in a general Riemannian is a topological sphere provided its mean curvature has a lower bound depending only on the scalar curvature of the ambient space and the squared norm of the mean curvature vector field of the immersion of the ambient space in some Euclidean space.


Stability Warped product manifolds Constant mean curvature 

Mathematics Subject Classification

53C42 49Q10 53A10 



The author would like to thank Hilário Alencar by helpful conversations during the preparation of this paper and to the anonymous referee by the useful observations.


  1. 1.
    Abresch, U., Rosenberg, H.: A Hopf differential for constant mean curvature surfaces in \({\mathbf{S}}^2\times {\mathbf{R}}\) and \({\mathbf{H}}^2\times {\mathbf{R}}\). Acta Math. 193(2), 141–174 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aledo, J., Rubio, R.: Stable minimal surfaces in Riemannian warped products. J. Geom. Anal. 27(1), 65–78 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alías, L., Dajczer, M.: Uniqueness of constant mean curvature surfaces properly immersed in a slab. Comment. Math. Helv. 81(3), 653–663 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alías, L., Dajczer, M.: Constant mean curvature hypersurfaces in warped product spaces. Proc. Edinb. Math. Soc. (2) 50(3), 511–526 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alías, L., Impera, D., Rigoli, M.: Hypersurfaces of constant higher order mean curvature in warped products. Trans. Am. Math. Soc. 365(2), 591–621 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barbosa, J.L., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math Z. 185(3), 339–353 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barbosa, J.L., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197(1), 123–138 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bessa, G.P., García-Martínez, S.C., Mari, L., Ramirez-Ospina, H.F.: Eigenvalue estimates for submanifolds of warped product spaces. Math. Proc. Cambridge Philos. Soc. 156(1), 25–42 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bezerra, K.S., Caminha, A., Lima, B.P.: On the stability of minimal cones in warped products. Bull. Braz. Math. Soc. (N.S.) 45(3), 485–503 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bray, H., Morgan, F.: An isoperimetric comparison theorem for Schwarzschild space and other manifolds. Proc. Am. Math. Soc. 130(5), 1467–1472 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bishop, R.L., O’Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc. 145, 1–49 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Brendle, S.: Constant mean curvature surfaces in warped product manifolds. Publ. Math. Inst. Hautes Études Sci. 117, 247–269 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Corvino, J., Gerek, A., Greenberg, M., Krummel, B.: On isoperimetric surfaces in general relativity. Pac. J. Math. 231(1), 63–84 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Forster, O.: Lectures on Riemann Surfaces. viii+254, Translated from the 1977 German original by Bruce Gilligan; Reprint of the 1981 English translation. Graduate Texts in Mathematics. Springer, New York (1991)Google Scholar
  15. 15.
    Frensel, K.: Stable complete surfaces with constant mean curvature. Bol. Soc. Brasil. Mat. (N.S.) 27(2), 129–144 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    García-Martínez, S.C., Impera, D., Rigoli, M.: A sharp height estimate for compact hypersurfaces with constant \(k\)-mean curvature in warped product spaces. Proc. Edinb. Math. Soc. (2) 58(2), 403–419 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gimeno, V.: Isoperimetric inequalities for submanifolds. Jellett-Minkowski’s formula revisited. Proc. Lond. Math. Soc. (3) 110(3), 593–614 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry, xii+813. Pure and Applied Mathematics. Wiley-Interscience, New York (1978)Google Scholar
  19. 19.
    Meis, T.: Die minimale Blätterzahl der Konkretisierungen einer kompakten Riemannschen Fläche (German), 61, Schr. Math. Inst. Univ. Münster No. 16, Münster (1960)Google Scholar
  20. 20.
    Montiel, S.: Stable constant mean curvature hypersurfaces in some Riemannian manifolds. Comment. Math. Helv. 73(4), 584–602 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    O’Neill, B.: Semi-Riemannian Geometry, xiii+468. Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York (1983)Google Scholar
  22. 22.
    Petersen, P.: Riemannian Geometry, 2nd edn, xvi+401. Graduate Texts in Mathematics. Springer, New York (2006)Google Scholar
  23. 23.
    Ritoré, M.: Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces. Commun. Anal. Geom. 9(5), 1093–1138 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ritoré, M., Ros, A.: Stable constant mean curvature tori and the isoperimetric problem in three space forms. Comment. Math. Helv. 67(2), 293–305 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ros, A.: One-sided complete stable minimal surfaces. J. Differ. Geom. 74(1), 69–92 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Salamanca, J., Salavessa, I.: Uniqueness of \(\phi \)-minimal hypersurfaces in warped product manifolds. J. Math. Anal. Appl. 422(2), 1376–1389 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Souam, R.: On stable constant mean curvature surfaces in \(\mathbb{S}^2\times \mathbb{R}\) and \(\mathbb{H}^2\times \mathbb{R}\). Trans. Am. Math. Soc. 362(6), 2845–2857 (2010)CrossRefzbMATHGoogle Scholar
  28. 28.
    Springer, G.: Introduction to Riemann Surfaces, viii+307. Addison-Wesley Publishing Company Inc, Reading (1957)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto de MatemáticaUniversidade Federal de AlagoasMaceióBrazil

Personalised recommendations