Annals of Global Analysis and Geometry

, Volume 55, Issue 4, pp 703–717 | Cite as

Toric nearly Kähler manifolds

  • Andrei MoroianuEmail author
  • Paul-Andi Nagy


We show that 6-dimensional strict nearly Kähler manifolds admitting effective \({\mathbb {T}}^3\) actions by automorphisms are completely characterized in the neigborhood of each point by a function on \({\mathbb {R}}^3\) satisfying a certain Monge–Ampère-type equation.


Killing vector field Nearly Kähler manifold Toric structure 

Mathematics Subject Classification

53C12 53C24 53C55 



  1. 1.
    Butruille, J.-B.: Classification des variétés approximativement kähleriennes homogènes. Ann. Global Anal. Geom. 27, 201–225 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dixon, K.: The multi-moment map of the nearly Kähler \(S^3\times S^3\). arXiv:1702.05297
  3. 3.
    Foscolo, L.: Deformation theory of nearly Kähle manifolds. J. Lond. Math. Soc. 95(2), 586–612 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Foscolo, L., Haskins, M.: New G2-holonomy cones and exotic nearly Kähle structures on the 6-sphere and the product of two 3-spheres. Ann. Math. 185(1), 59–130 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Friedrich, Th, Grunewald, R.: On the first eigenvalue of the Dirac operator on 6-dimensional manifolds. Ann. Global Anal. Geom. 3, 265–273 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gray, A.: The structure of nearly Kähler manifolds. Math. Ann. 223, 233–248 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gray, A., Hervella, L.M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123, 35–58 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hitchin, N.: The geometry of three-forms in six dimensions. J. Differential Geom. 55, 547–576 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Madsen, T.B., Swann, A.: Closed forms and multi-moment maps. Geom. Dedicata 165(1), 25–52 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Moroianu, A., Nagy, P.-A., Semmelmann, U.: Unit Killing vector fields on nearly Kähler manifolds. Int. J. Math. 16, 281–301 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Moroianu, A., Semmelmann, U.: The Hermitian Laplace operator on nearly Kähler manifolds. Comm. Math. Phys. 294, 251–272 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nagy, P.-A.: Nearly-Kähler geometry and Riemannian foliations. Asian J. Math. 6(3), 481–504 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques d’OrsayUniv. Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance
  2. 2.Department of MathematicsThe University of MurciaEspinardo, MurciaSpain

Personalised recommendations