First eigenvalues of geometric operators under the Yamabe flow
Article
First Online:
Received:
Accepted:
- 22 Downloads
Abstract
Suppose \((M,g_0)\) is a compact Riemannian manifold without boundary of dimension \(n\ge 3\). Using the Yamabe flow, we obtain estimate for the first nonzero eigenvalue of the Laplacian of \(g_0\) with negative scalar curvature in terms of the Yamabe metric in its conformal class. On the other hand, we prove that the first eigenvalue of some geometric operators on a compact Riemannian manifold is nondecreasing along the unnormalized Yamabe flow under suitable curvature assumption. Similar results are obtained for manifolds with boundary and for CR manifold.
Keywords
Yamabe flow Eigenvalue CR manifoldMathematics Subject Classification
Primary 53C44 58C40 Secondary 35K55 53C21 58J35References
- 1.Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55, 269–296 (1976)MathSciNetMATHGoogle Scholar
- 2.Barbosa, E., Ribeiro Jr., E.: On conformal solutions of the Yamabe flow. Arch. Math. (Basel) 101, 79–89 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 3.Brendle, S.: A generalization of the Yamabe flow for manifolds with boundary. Asian J. Math. 6, 625–644 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 4.Brendle, S.: Convergence of the Yamabe flow for arbitrary initial energy. J. Differ. Geom. 69, 217–278 (2005)MathSciNetCrossRefMATHGoogle Scholar
- 5.Brendle, S.: Convergence of the Yamabe flow in dimension 6 and higher. Invent. Math. 170, 541–576 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 6.Brendle, S., Chen, S.-Y.S.: An existence theorem for the Yamabe problem on manifolds with boundary. J. Eur. Math. Soc. (JEMS) 16, 991–1016 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 7.Cao, X.: Eigenvalues of \((-\Delta +\frac{R}{2})\) on manifolds with nonnegative curvature operator. Math. Ann. 377, 435–441 (2007)MathSciNetGoogle Scholar
- 8.Cao, X.: First eigenvalues of geometric operators under the Ricci flow. Proc. Am. Math. Soc. 136, 4075–4078 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 9.Cao, X., Hou, S., Ling, J.: Estimate and monotonicity of the first eigenvalue under the Ricci flow. Math. Ann. 354, 451–463 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 10.Chang, S.C., Cheng, J.H.: The Harnack estimate for the Yamabe flow on CR manifolds of dimension 3. Ann. Glob. Anal. Geom. 21, 111–121 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 11.Chang, S.C., Chiu, H.L., Cheng, J.H.: The Li–Yau–Hamilton inequality for Yamabe flow on a closed CR \(3\)-manifold. Trans. Am. Math. Soc. 362, 1681–1698 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 12.Chang, S.C., Lin, C.Y., Wu, C.T.: Eigenvalues and energy functional with monotonicity formulae under the CR Yamabe flow on a closed pseudohermitian 3-manifold. Nonlinear Stud. 18, 377–392 (2011)MathSciNetMATHGoogle Scholar
- 13.Cheng, J.H., Chiu, H.L., Yang, P.: Uniformization of spherical CR manifolds. Adv. Math. 255, 182–216 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 14.Cheng, J.H., Malchiodi, A., Yang, P.: A positive mass theorem in three dimensional Cauchy–Riemann geometry. Adv. Math. 308, 276–347 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 15.Chow, B.: The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature. Commun. Pure Appl. Math. 45, 1003–1014 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 16.Daskalopoulos, P., del Pino, M., King, J., Sesum, N.: Type I ancient compact solutions of the Yamabe flow. Nonlinear Anal. 137, 338–356 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 17.Escobar, J.F.: Uniqueness and non-uniqueness of metrics with prescribed scalar and mean curvature on compact manifolds with boundary. J. Funct. Anal. 202, 424–442 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 18.Escobar, J.F.: The Yamabe problem on manifolds with boundary. J. Differ. Geom. 35, 21–84 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 19.Gamara, N.: The CR Yamabe conjecture—the case \(n=1\). J. Eur. Math. Soc. 3, 105–137 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 20.Gamara, N., Yacoub, R.: CR Yamabe conjecture–the conformally flat case. Pacific J. Math. 201, 121–175 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 21.Hamilton, R.S.: Lectures on Geometric Flows (1989), unpublishedGoogle Scholar
- 22.Han, Z.C., Li, Y.Y.: The Yamabe problem on manifolds with boundary: existence and compactness results. Duke Math. J. 99, 489–542 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 23.Hagood, J.W., Thomson, B.S.: Recovering a function from a Dini derivative. Am. Math. Mon. 113, 34–46 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 24.Ho, P.T.: Result related to prescribing pseudo-Hermitian scalar curvature. Int. J. Math 24, 29 (2013)MathSciNetCrossRefGoogle Scholar
- 25.Ho, P.T.: The long time existence and convergence of the CR Yamabe flow. Commun. Contemp. Math 14, 50 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 26.Ho, P.T.: The Webster scalar curvature flow on CR sphere. Part I. Adv. Math. 268, 758–835 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 27.Ho, P.T.: The Webster scalar curvature flow on CR sphere. Part II. Adv. Math. 268, 836–905 (2015)MathSciNetMATHGoogle Scholar
- 28.Ho, P. T.: First eigenvalues of geometric operators under the Yamabe flow (2018). arXiv:1803.07787
- 29.Jerison, D., Lee, J.M.: Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Am. Math. Soc. 1, 1–13 (1988)MathSciNetCrossRefMATHGoogle Scholar
- 30.Jerison, D., Lee, J.M.: Intrinsic CR normal coordinates and the CR Yamabe problem. J. Differ. Geom. 29, 303–343 (1989)MathSciNetCrossRefMATHGoogle Scholar
- 31.Jerison, D., Lee, J.M.: The Yamabe problem on CR manifolds. J. Differ. Geom. 25, 167–197 (1987)MathSciNetCrossRefMATHGoogle Scholar
- 32.Kato, T.: Perturbation theory for linear operator, 2nd edn. Springer, Berlin (1984)Google Scholar
- 33.Kazdan, J.L., Warner, F.W.: Scalar curvature and conformal deformation of Riemannian structure. J. Differ. Geom. 10, 113–134 (1975)MathSciNetCrossRefMATHGoogle Scholar
- 34.Kleiner, B., Lott, J.: Note on Perelman’s papers. Geom. Topol. 12, 2587–2855 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 35.Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17, 37–91 (1987)MathSciNetCrossRefMATHGoogle Scholar
- 36.Li, J.F.: Eigenvalues and energy functionals with monotonicity formulae under Ricci flow. Math. Ann. 338, 927–946 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 37.Li, J.F.: Evolution of eigenvalues along rescaled Ricci flow. Can. Math. Bull. 56, 127–135 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 38.Li, P., Yau, S.T.: Estimates of eigenvalues of a compact Riemannian manifold. In: Geometry of the Laplace Operator (Honolulu 1979). Proceedings of Symposium Pure Mathematics 36, American Mathematical Society, Providence, pp. 205–239 (1980)Google Scholar
- 39.Ling, J.: The first Dirichlet eigenvalue of a compact manifold and the Yang conjecture. Math. Nachr. 280, 1354–1362 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 40.Lou, Y.: Uniqueness and non-uniqueness of metrics with prescribed scalar curvature on compact manifolds. Indiana Univ. Math. J. 47, 1065–1081 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 41.Ma, L.: Eigenvalue monotonicity for the Ricci-Hamilton flow. Ann. Glob. Anal. Geom. 29, 287–292 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 42.Ma, L., Cheng, L.: Yamabe flow and Myers type theorem on complete manifolds. J. Geom. Anal. 24, 246–270 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 43.Ma, L., Liang, L., Zhu, A.: Extending Yamabe flow on complete Riemannian manifolds. Bull. Sci. Math. 136, 882–891 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 44.Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159
- 45.Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV, Analysis of Operators. Academic Press, Cambridge (1972)MATHGoogle Scholar
- 46.Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)MathSciNetCrossRefMATHGoogle Scholar
- 47.Schwetlick, H., Struwe, M.: Convergence of the Yamabe flow for “large” energies. J. Reine Angew. Math. 562, 59–100 (2003)MathSciNetMATHGoogle Scholar
- 48.Suàrez-Serrato, P., Tapie, S.: Conformal entropy rigidity through Yamabe flows. Math. Ann. 353, 333–357 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 49.Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa (3) 22, 265–274 (1968)MathSciNetMATHGoogle Scholar
- 50.Wu, J.Y., Wang, E.M., Zheng, Y.: First eigenvalue of the \(p\)-Laplace operator along the Ricci flow. Ann. Glob. Anal. Geom. 38, 27–55 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 51.Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)MathSciNetMATHGoogle Scholar
- 52.Ye, R.: Global existence and convergence of Yamabe flow. J. Differ. Geom. 39, 35–50 (1994)MathSciNetCrossRefMATHGoogle Scholar
- 53.Zhang, Y.: The contact Yamabe flow. Ph.D. thesis, University of Hanover (2006)Google Scholar
- 54.Zhao, L.: The first eigenvalue of Laplace operator under powers of mean curvature flow. Sci. China Math. 53, 1703–1710 (2010)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer Science+Business Media B.V., part of Springer Nature 2018