Annals of Global Analysis and Geometry

, Volume 55, Issue 4, pp 657–679 | Cite as

The m-accretivity of covariant Schrödinger operators with unbounded drift

  • Ognjen MilatovicEmail author


We work in the context of a geodesically complete Riemannian n-manifold M with a Hermitian vector bundle \(\mathcal {V}\) over M, equipped with a metric covariant derivative \(\nabla \). We study the operator \(H:=\nabla ^{\dagger }\nabla +\nabla _{X}+V\), where \(\nabla ^{\dagger }\) is the formal adjoint of \(\nabla \), the symbol \(\nabla _{X}\) stands for the action of \(\nabla \) along a smooth vector field X on M, and V is a locally bounded section of the endomorphism bundle \({\text {End}}\mathcal {V}\). We show that under certain conditions on X and V, the closure \(\overline{H|_{C_{c}^{\infty }(\mathcal {V})}}\) of \(H|_{C_{c}^{\infty }(\mathcal {V})}\) in \(L^p(\mathcal {V})\), where \(1<p<\infty \), is a maximal accretive operator. We also show that \(\overline{H|_{C_{c}^{\infty }(\mathcal {V})}}\) coincides with the “maximal” realization of H in \(L^p(\mathcal {V})\).


Bochner Laplacian Covariant Schrödinger operator Drift m-Accretivity Riemannian manifold 

Mathematics Subject Classification

35P05 47B44 58J05 



We thank Hemanth Saratchandran for writing the proof of part (iv) of Lemma 2. We also use this opportunity to express our gratitude to the referees for valuable comments and suggestions and for drawing our attention to the paper [21].


  1. 1.
    Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates. In: Dafermos, C.M., Feireisl, E. (eds.) Handbook of Differential Equations, Evolutionary Equations, vol. 1, pp. 1–85. North-Holland, Amsterdam (2004)Google Scholar
  2. 2.
    Arendt, W., Batty, C.J.K., Charles, J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics. Birkhäuser Verlag, Basel (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Arendt, W., Metafune, G., Pallara, D.: Gaussian estimates for elliptic operators with unbounded drift. J. Math. Anal. Appl. 338, 505–517 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 94. Springer, New York (2000)zbMATHGoogle Scholar
  5. 5.
    Güneysu, B.: The Feynman–Kac formula for Schrödinger operators on vector bundles over complete manifolds. J. Geom. Phys. 60, 1997–2010 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Güneysu, B.: On generalized Schrödinger semigroups. J. Funct. Anal. 262, 4639–4674 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Güneysu, B.: Covariant Schrödinger Semigroups on Riemannian Manifolds. Operator Theory: Advances and Applications, vol. 264. Birkhäuser, Basel (2017)zbMATHGoogle Scholar
  8. 8.
    Güneysu, B.: The BMS-conjecture. Ulmer Seminare 20, 97–101 (2016/2017)Google Scholar
  9. 9.
    Güneysu, B., Pigola, S.: \(L^p\)-interpolation inequalities and global Sobolev regularity results. Ann. Mat. Pura Appl. (2018).
  10. 10.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1980)zbMATHGoogle Scholar
  11. 11.
    Kato, T.: \(L^p\)-theory of Schrödinger operators with a singular potential. In: Nagel, R., Schlotterbeck, U., Wolff, M.P.H. (eds.) Aspects of Positivity in Functional Analysis. North-Holland Mathematics Studies, vol. 122, pp. 63–78. North-Holland, Amsterdam (1986)Google Scholar
  12. 12.
    Leinfelder, H., Simader, C.: Schrödinger operators with singular magnetic vector potentials. Math. Z. 176, 1–19 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Metafune, G., Ouhabaz, E., Pallara, D.: Long time behavior of heat kernels of operators with unbounded drift terms. J. Math. Anal. Appl. 377, 170–179 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Metafune, G., Pallara, D., Rabier, P., Schnaubelt, R.: Uniqueness for elliptic operators on \(L^p({\mathbb{R}}^n)\) with unbounded coefficients. Forum Math. 22, 583–601 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Milatovic, O.: On \(m\)-accretivity of perturbed Bochner Laplacian in \(L^p\)-spaces on Riemannian manifolds. Integral Equations Operator Theory 68, 243–254 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nicolaescu, L.I.: Lectures on the Geometry of Manifolds. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2007)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ouhabaz, E.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton, NJ (2005)zbMATHGoogle Scholar
  18. 18.
    Simon, B.: Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.) 7, 447–526 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sobajima, M.: \(L^p\)-theory for second-order elliptic operators with unbounded coefficients. J. Evol. Equ. 12, 957–971 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sobajima, M.: \(L^p\)-theory for second-order elliptic operators with unbounded drift. Sūrikaisekikenkyūsho Kōkyūroku 1856, 75–88 (2013)Google Scholar
  21. 21.
    Sobajima, M.: \(L^p\)-theory for second-order elliptic operators with unbounded coefficients in an endpoint class. J. Evol. Equ. 14, 461–475 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Strichartz, R.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Taylor, M.: Partial Differential Equations II: Qualitative Studies of Linear Equations. Springer, New York (1996)zbMATHGoogle Scholar
  24. 24.
    Thalmaier, A., Thompson, J.: Derivative and divergence formulae for diffusion semigroups. Ann. Prob. (to appear)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of North FloridaJacksonvilleUSA

Personalised recommendations