Advertisement

Aerobiologia

, Volume 35, Issue 4, pp 659–669 | Cite as

Pollen season identification for three pollen taxa in Thessaloniki, Greece: a 30-year retrospective analysis

  • Kostas KaratzasEmail author
  • Aggelos Tsiamis
  • Athanasios Charalampopoulos
  • Athanasios Damialis
  • Despoina Vokou
Original Paper

Abstract

To examine the applicability of the recently proposed criteria by the European Academy of Allergy and Clinical Immunology (EAACI) for pollen season (PS) definition, we applied them to a 30-year time series of daily concentrations of cypress (Cupressaceae), olive (Oleaceae), and grass (Poaceae) airborne pollen from a Mediterranean city, Thessaloniki, Greece. These criteria led to PS definition for every year in the case of grasses, but they did not result to a defined pollen season in each year for 10% of the examined period in the case of cypress (Cupressaceae) and even for 60% in the case of olive (Oleaceae). Application of the EAACI thresholds to data series of Thessaloniki shows the need for an accurate analysis and revision of the symptom thresholds for PS definition for olive and cypress in the Mediterranean area. Given that the PS, as defined after the EAACI criteria, corresponds to only the part of the PS inducing allergy symptoms, a different term ‘allergy symptom-inducing pollen season’ is proposed so as to avoid confusion but also make clear that, depending on the purpose of the study, different criteria may be used for PS definition.

Keywords

Allergy symptom-inducing pollen season Allergic rhinitis Cypress EAACI criteria Grasses Mediterranean Olive 

Notes

Authors’ contribution

KK initiated the study, made data analysis, and drafted the manuscript; AT made data analysis and PS calculations; AC, AD, and DV provided pollen data and expert support. All authors contributed to the writing of the manuscript and DV concluded the final version.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Andersen, T. B. (1991). A model to predict the beginning of the pollen season. Grana,30, 269–275.CrossRefGoogle Scholar
  2. Augé, J., Vent, J., Agache, I., Airaksinen, L., Campo Mozo, P., Chaker, A., et al. (2018). Position paper on the standardization of nasal allergen challenges. Allergy,73, 1597–1608.CrossRefGoogle Scholar
  3. Bastl, K., Kmenta, M., & Berger, U. E. (2018). Defining pollen seasons: Background and recommendations. Current Allergy and Asthma Reports.  https://doi.org/10.1007/s11882-018-0829-z.CrossRefGoogle Scholar
  4. Blionis, G. J., Halley, J. M., & Vokou, D. (2001). Flowering phenology of Campanula on Mt Olympos, Greece. Ecography,24, 696–706.CrossRefGoogle Scholar
  5. Charalampopoulos, A., Lazarina, M., Tsiripidis, I., & Vokou, D. (2018). Quantifying the relationship between airborne pollen and vegetation in the urban environment. Aerobiologia.  https://doi.org/10.1007/s10453-018-9513-y.CrossRefGoogle Scholar
  6. Damialis, A., Halley, J. M., Gioulekas, D., & Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environment,41, 7011–7021.CrossRefGoogle Scholar
  7. Damialis, A., Häring, F., Gökkaya, M., Rauer, D., Reiger, M., Bezold, S., et al. (2019). Human exposure to airborne pollen and relationships with symptoms and immune responses: Indoors versus outdoors, circadian patterns and meteorological effects in alpine and urban environments. Science of the Total Environment,653, 190–199.CrossRefGoogle Scholar
  8. De Weger, L., Bergmann, K.-C., Rantio-Lehtimäki, A., Dahl, Å., Buters, J., Déchamp, C., et al. (2013). Impact of pollen. In M. Sofiev & K.-C. Bergman (Eds.), Allergenic pollen (pp. 161–215). Dordrecht: Springer.CrossRefGoogle Scholar
  9. Florido, J. F., Delgado, P. G., de San Pedro, B. S., Quiralte, J., de Saavedra, J. M., Peralta, V., et al. (1999). High levels of Olea europaea pollen and relation with clinical findings. International Archives of Allergy and Immunology,119, 133–137.CrossRefGoogle Scholar
  10. Galán, C., Emberlin, J., Domínguez, E., Bryant, R. H., & Villamandos, F. (1995). A comparative analysis of daily variations in the Gramineae pollen counts at Córdoba, Spain and London, UK. Grana,34, 189–198.CrossRefGoogle Scholar
  11. Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia,30, 385–395.CrossRefGoogle Scholar
  12. Giorato, M., Lorenzoni, F., Bordin, A., De Biasi, G., Gemignan, C., Schiappoli, M., et al. (2000). Airborne allergenic pollens in Padua: 1991–1996. Aerobiologia,16, 453–454.CrossRefGoogle Scholar
  13. Gioulekas, D., Papakosta, D., Damialis, A., Spieksma, F., Giouleka, P., & Patakas, D. (2004). Allergenic pollen records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki, Greece. Allergy,59, 174–184.CrossRefGoogle Scholar
  14. Gruijthuijsen, Y. K., Grieshuber, I., Stöcklinger, A., Tischler, U., Fehrenbach, T., Weller, M. G., et al. (2006). Nitration enhances the allergenic potential of proteins. International Archives of Allergy and Immunology,141, 265–275.CrossRefGoogle Scholar
  15. Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology,39, 257–265.CrossRefGoogle Scholar
  16. HNMS. (2018). Hellenic national meteorological service, climatic data for selected stations in GreeceThessaloniki Mikra. http://www.hnms.gr/emy/en/climatology/climatology_city. Accessed March 03, 2019.
  17. Jato, V., Rodríguez-Rajo, F. J., Alcázar, P., De Nuntiis, P., Galán, C., & Mandrioli, P. (2006). May the definition of pollen season influence aerobiological results? Aerobiologia,22, 13–25.CrossRefGoogle Scholar
  18. Karatzas, K., Katsifarakis, N., Riga, M., Werchan, B., Werchan, M., Berger, U., et al. (2018a). New European Academy of Allergy and Clinical Immunology definition on pollen season mirrors symptom load for grass and birch pollen-induced rhinitis. Allergy.  https://doi.org/10.1111/all.13487.CrossRefGoogle Scholar
  19. Karatzas, K., Papamanolis, L., Katsifarakis, N., Riga, M., Werchan, M., Werchan, U., et al. (2018b). Google trends reflect allergic rhinitis symptoms related to birch and grass pollen seasons. Aerobiologia,34, 437–444.CrossRefGoogle Scholar
  20. Karatzas, K., Riga, M., Berger, U., Werchan, M., Pfaar, O., & Bergmann, K Ch. (2018c). Computational proof of the recently proposed pollen season definition criteria. Allergy,73, 5–7.CrossRefGoogle Scholar
  21. Kassandros, T., Tsiamis, A., Damialis, A., Vokou, D., Katsifarakis, N., & Karatzas, K. (2018). Analysis and modelling of biological weather data in Thessaloniki. In N. Theodosiou, C. Christodoulatos, A. Koutsospyros, D. Karpouzos & Z. Mallios (Eds.), Protection and restoration of the environment XIV, proceedings of an international congress, Thessaloniki, Macedonia, Greece (pp. 274–283). ISBN: 978-960-99922-4-4. http://pre14.civil.auth.gr/images/DownLoads/03-PRE-XIV_Book-of-Proceedings.pdf.
  22. Lipiec, A., Rapiejko, P., Samoliński, B., & Krzych, E. (2005). Correlation between conjunctival provocation test results and conjunctival symptoms in pollinosis—Preliminary report. Annals of Agricultural and Environmental Medicine,12, 17–20.Google Scholar
  23. Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden) 1973–1980. Grana,20, 179–182.CrossRefGoogle Scholar
  24. Petanidou, T., Ellis, W. N., Margaris, N. S., & Vokou, D. (1995). Constraints on flowering phenology in a phryganic (East Mediterranean shrub) community. American Journal of Botany,82, 607–620.CrossRefGoogle Scholar
  25. Pfaar, O., et al. (2019). Pollen season is reflected on symptom load for grass and birch pollen-induced allergic rhinitis in different geographic areas-an EAACI Task Force Report (in preparation).Google Scholar
  26. Pfaar, O., Alvaro, M., Cardona, V., Hamelmann, E., Mösges, R., & Kleine-Tebbe, J. (2018). Clinical trials in allergen immunotherapy: Current concepts and future needs. Allergy.  https://doi.org/10.1111/all.13429.CrossRefGoogle Scholar
  27. Pfaar, O., Bastl, K., Berger, U., Buters, J., Calderon, M. A., Clot, B., et al. (2017). Defining pollen exposure times for clinical trials of allergen immunotherapy for pollen induced rhinoconjunctivitis—An EAACI position paper. Allergy,72, 713–722.CrossRefGoogle Scholar
  28. Rachovitsas, D., Papadopoulou, D., Kollis, S., Zisi, A., & Psillas, G. (2017). Allergic rhinitis: Clinical patterns and risk factors in Thessaloniki and Northern Greece. A retrospective study in a tertiary reference clinic. Gazzeta Medica Italiana – Archivio per le Scienze Mediche,176, 489–496.Google Scholar
  29. Sánchez-Mesa, J. A., Smith, M., Emberlin, J., Allitt, U., Caulton, E., & Galán, C. (2003). Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia,19, 243–250.CrossRefGoogle Scholar
  30. Sedghy, F., Varasteh, A.-R., Sankian, M., & Moghadam, M. (2018). Interaction between air pollutants and pollen grains: The role on the rising trend in allergy. Reports of Biochemistry & Molecular Biology,6, 220–224.Google Scholar
  31. Sichletidis, L., Chloros, D., Tsiotsios, I., Gioulekas, D., Kyriazis, G., Spyratos, D., et al. (2004). The prevalence of allergic asthma and rhinitis in children of Polichni, Thessaloniki. Allergologia y Immunopathologia,32, 59–63.CrossRefGoogle Scholar
  32. Sikoparija, B., Skjøth, C. A., Celenk, S., Testoni, C., Abramidze, T., Alm Kübler, K., et al. (2017). Spatial and temporal variations in airborne Ambrosia pollen in Europe. Aerobiologia,33, 181–189.CrossRefGoogle Scholar
  33. Smith, M., Jäger, S., Berger, U., Sikoparija, B., Hallsdottir, M., Sauliene, I., et al. (2014). Geographic and temporal variations in pollen exposure across Europe. Allergy,69, 913–923.CrossRefGoogle Scholar
  34. Thibaudon, M. (2003). Allergy risk associated with pollens in France. European Annals of Allergy and Clinical Immunology,35, 170–172.Google Scholar
  35. Vlachokostas, C., Michailidou, A. V., Matziris, E., Achillas, C., & Moussiopoulos, N. (2014). A multiple criteria decision-making approach to put forward tree species in urban environment. Urban Climate,10, 105–118.CrossRefGoogle Scholar
  36. Voukantsis, D., Niska, H., Karatzas, K., Riga, M., Damialis, A., & Vokou, D. (2010). Forecasting daily pollen concentrations using data-driven modeling methods in Thessaloniki, Greece. Atmospheric Environment,44, 5101–5111.CrossRefGoogle Scholar
  37. Waisel, Y., Mienis, Z., Kosman, E., & Geller-Bernstein, C. (2004). The partial contribution of specific airborne pollen to pollen induced allergy. Aerobiologia,20, 197–208.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Environmental Informatics Research Group, School of Mechanical EngineeringAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Ecology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Chair and Institute of Environmental MedicineUNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Research Center for Environmental HealthAugsburgGermany

Personalised recommendations