Advertisement

Aerobiologia

pp 1–12 | Cite as

Relationship between airborne pollen and skin prick test results in Elazığ, Turkey

  • M. KilicEmail author
  • M. K. Altunoglu
  • S. Akpınar
  • G. E. Akdogan
  • E. Taskin
Original Paper
  • 20 Downloads

Abstract

This study investigated the relationship between the types of pollen in the air and sensitization to pollen in a skin prick test in allergic children. The pollen in the atmosphere of Elazığ city was measured between June 2013 and June 2014. The study included 520 children with allergic complaints. In the atmosphere of Elazığ city, pollen belonging to a total of 38 taxa was identified, including 20 woody plants and 18 herbaceous plants. The annual pollen integral of 108,313 pollen day/m3 from the 38 taxa was identified. The most common pollen detected was woody plants (76.4%), weeds (14.1%), Poaceae (Gramineae) (9.1%), and unidentified plants (0.4%). The skin prick test in allergic children found that they were most commonly sensitized to mixture of grasses and cereals (43.8%), weed (14.1%), tree mixture I (10.1%), and tree mixture II (7.9%). There was no direct relationship between the frequency of pollen types in the atmosphere and the sensitization frequency to pollen, as identified by the skin prick test in allergic patients. We believe that the data from this study will provide new information to other researchers and clinicians in the evaluation of allergic diseases.

Keywords

Airborne pollen Volumetric method Allergic children Skin prick test 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the clinic.

References

  1. Altintaş, D. U., Karakoç, G. B., Yilmaz, M., Pinar, M., Kendirli, S. G., & Cakan, H. (2004). Relationship between pollen counts and weather variables in east-Mediterranean coast of Turkey: Does it affect allergic symptoms in pollen allergic children? Clinical and Developmental Immunology, 11, 87–96.CrossRefGoogle Scholar
  2. Andersson, K., & Lidholm, J. (2003). Characteristics and immunobiology of grass pollen allergens. International Archives of Allergy and Immunology, 130(2), 87–107.CrossRefGoogle Scholar
  3. Asam, C., Hofer, H., Wolf, M., Aglas, L., & Wallner, M. (2015). Tree pollen allergens-an update from a molecular perspective. Allergy, 70(10), 1201–1211.CrossRefGoogle Scholar
  4. Behçet, L. (2004). A new record for the flora of Turkey: Ambrosia tenuifolia Spreng. (Compositae). Turkish Journal of Botany, 28, 201–203.Google Scholar
  5. Bıçakçı, A. (2011). Seasonal and regional airborne pollen concentration in Turkey. Turkiye Klinikleri Journal of Allergy-Special Topics, 4(1), 10–14. (Article in Turkish).Google Scholar
  6. Bıçakçı, A., Altunoğlu, M. K., Bilişik, A., Çelenk, S., Canıtez, Y., Malyer, H., et al. (2009a). Airborne pollen grains of Turkey. Asthma Allergy Immunology, 7, 11–17. (Article in Turkish).Google Scholar
  7. Bıçakçı, A., Altunoğlu, M. K., Tosunoğlu, A., Çelenk, S., Canıtez, Y., Malyer, H., et al. (2009b). Allergenic airborne Olea (olive) and Fraxinus (ash) pollenconcentrations belonging to the Oleaceae family in Turkey. Asthma Allergy Immunology, 7, 133–146. (Article in Turkish).Google Scholar
  8. Bıçakçı, A., Çelenk, S., Altunoğlu, M. K., Bilişik, A., Canıtez, Y., Malyer, H., et al. (2009c). Allergenic airborne Poaceae(Grass) pollen concentrations in Turkey. Asthma Allergy Immunology, 7, 90–99. (Article in Turkish).Google Scholar
  9. Bıçakçı, A., & Tosunoğlu, A. (2015). Allergenic Ambrosia (ragweed) pollen concentrations in Turkey. Asthma Allergy Immunology, 13, 33–46. (Article in Turkish).Google Scholar
  10. Bıçakçı, A., Tosunoğlu, A., Altunoğlu, M. K., Akkaya, A., Malyer, H., & Sapan, N. (2011). Allergenic Pinus (pine) pollen concentrations in Turkey. Asthma Allergy Immunology, 9, 92–100. (Article in Turkish).Google Scholar
  11. Bousquet, J., Cour, P., Guerin, B., & Michel, F. B. (1984). Allergy in the Mediterranean area. I. Pollen counts and pollinosis of Montpellier. Clinical and Experimental Allergy, 14(3), 249–258.CrossRefGoogle Scholar
  12. Bousquet, J., Heinzerling, L., Bachert, C., Papadopoulos, N. G., Bousquet, P. J., Burney, P. G., et al. (2012). Practical guide to skin prick tests in allergy to aeroallergens. Allergy, 67(1), 18–24.CrossRefGoogle Scholar
  13. Čamprag, S. N., Popović, A., & Đorđević, D. (2015). Air pollution by pollen grains of Anemophilous Species: Influence of chemical and meteorological parameters. Water, Air, and Soil pollution, 226(9), 226–292.Google Scholar
  14. Canıtez, Y., Perçin, K., & Sapan, N. (2007). Allergen sensitivies of the children with asthma in Bursa, Türkiye. Allergy, 62, 419–420.Google Scholar
  15. Celenk, S., Bicakci, A., Tamay, Z., Guler, N., Altunoglu, M. K., Canitez, Y., et al. (2010). Airborne pollen in European and Asian parts of Istanbul. Environmental Monitoring and Assessment, 164(1–4), 391–402.CrossRefGoogle Scholar
  16. Charpin, J., Surinyach, R., & Frankland, A. W. (1974). Atlas of European allergenic pollens. Paris: Sandos Editions.Google Scholar
  17. D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62(9), 976–990.CrossRefGoogle Scholar
  18. D’Amato, G., & Lobefalo, G. (1989). Allergenic pollens in the southern Mediterranean area. Journal of Allergy and Clinical Immunology, 83(1), 116–122.CrossRefGoogle Scholar
  19. Driessen, M. N., & Quanjer, P. H. (1991). Pollen deposition in intrathoracic airways. European Respiratory Journal, 4(3), 359–363.Google Scholar
  20. Esch, R. E. (2008). Grass pollen allergens. Clinical Allergy and Immunology, 21, 107–126.Google Scholar
  21. Esch, R. E., & Bush, R. K. (2009). Aerobiology of outdoor allergens. In N. F. Adkinson, B. S. Bochner, W. W. Busse, S. T. Holgate, R. F. Lemanske & F. E. R. Simons (Eds.), Middleton’s allergy: Principles and practice (7th Edn., Vol. 1, pp. 509–537). Philadelphia: Mosby Elsevier.CrossRefGoogle Scholar
  22. Esch, R. E., & Klapper, D. G. (1989). Isolation and characterization of a major cross-reactive grass group I allergenic determinant. Molecular Immunology, 26(6), 557–561.CrossRefGoogle Scholar
  23. Gadermaier, G., Dedic, A., Obermeyer, G., Frank, S., Himly, M., & Ferreira, F. (2004). Biology of weed pollen allergens. Current Allergy and Asthma Reports, 4(5), 391–400.CrossRefGoogle Scholar
  24. Gadermaier, G., Hauser, M., & Ferreira, F. (2014). Allergens of weed pollen: An overview on recombinant and natural molecules. Methods, 66(1), 55–66.CrossRefGoogle Scholar
  25. Galán, C., Cariñanos, P., Alcázar, P., & Dominguez-Vilches, E. (2007). Spanish aerobiology network (REA) management and quality manual. Servicio de Publicaciones Universidad de Córdoba. ISBN 978-84-690-6353-8.Google Scholar
  26. García-Mozo, H., Oteros, J. A., & Galán, C. (2016). Impact of land cover changes and climate on the main airborne pollen types in Southern Spain. Science of the Total Environment, 548–549, 221–228.CrossRefGoogle Scholar
  27. Heinzerling, L. M., Burbach, G. J., Edenharter, G., Bachert, C., Bindslev-Jensen, C., Bonini, S., et al. (2009). GA(2)LEN skin test study I: GA(2)LEN harmonization of skin prick testing-novel sensitization patterns for inhalant allergens in Europe. Allergy, 64(10), 1498–1506.CrossRefGoogle Scholar
  28. Jaeger, S. (2008). Exposure to grass pollen in Europe. Clinical and Experimental Allergy, 8(1), 2–6.CrossRefGoogle Scholar
  29. Jato, V., Dopazo, A., & Aira, M. J. (2002). Influence of precipitation and temperature on airborne pollen concentration in Santiago de Compostela (Spain). Grana, 41(4), 232–241.CrossRefGoogle Scholar
  30. Jato, V., Rodríguez-Rajo, F. J., Seijo, M. C., & Aira, M. J. (2009). Poaceae pollen in Galicia (N.W. Spain): Characterisation and recent trends in atmospheric pollen season. International Journal of Biometeorology, 53(4), 333–344.CrossRefGoogle Scholar
  31. Kilic, M., & Taskin, E. (2016). Distribution of inhalant allergies in pediatric patients presenting with allergic complaints in the Eastern Anatolia Region. Minerva Pediatrica, 68(4), 269–277.Google Scholar
  32. Makra, L., Juhász, M., Borsos, E., & Béczi, R. (2004). Meteorological variables connected with airborne ragweed pollen in Southern Hungary. International Journal of Biometeorology, 49(1), 37–47.CrossRefGoogle Scholar
  33. Mohapatra, S. S., Lockey, R. F., & Polo, F. (2008). Weed pollen allergens. Clinical Allergy and Immunology, 21, 127–139.Google Scholar
  34. Mothes, N., Horak, F., & Valenta, R. (2004). Transition from a botanical to a molecular classification in tree pollen allergy: Implications for diagnosis and therapy. International Archives of Allergy and Immunology, 135(4), 357–373.CrossRefGoogle Scholar
  35. Negrini, A. C. (1992). Pollen as allergens. Aerobiologia, 8, 9–15.CrossRefGoogle Scholar
  36. Şahiner, U. M., Civelek, E., Yavuz, S. T., Büyüktiryaki, A. B., Tuncer, A., & Şekerel, B. E. (2012). Skin prick testing to aeroallergen extracts: What is the optimal panel in children and adolescents in Turkey? International Archives of Allergy and Immunology, 157(4), 391–398.CrossRefGoogle Scholar
  37. Singh, M., & Hays, A. (2016). Indoor and outdoor allergies. Primary Care, 43(3), 451–463.CrossRefGoogle Scholar
  38. Singh, A. B., & Shahi, S. (2008). Aeroallergens in clinical practice of allergy in India-ARIA Asia Pacific Workshop report. Asian Pacific Journal of Allergy and Immunology, 26(4), 245–256.Google Scholar
  39. Subiza, J., Jerez, M., Jiménez, J. A., Narganes, M. J., Cabrera, M., Varela, S., et al. (1995). Allergenic pollen pollinosis in Madrid. Journal of Allergy and Clinical Immunology, 96(1), 15–23.CrossRefGoogle Scholar
  40. Suphioglu, C., Singh, M. B., Taylor, P., Knox, R. B., Bellomo, R., Holmes, P., et al. (1992). Mechanism of grass-pollen induced asthma. The Lancet, 339(8793), 569–572.CrossRefGoogle Scholar
  41. Swoboda, I., Twaroch, T., Valenta, R., & Grote, M. (2008). Tree pollen allergens. Clinical Allergy and Immunology, 21, 87–105.Google Scholar
  42. Szczepanek, K., Myszkowska, D., Worobiec, E., Piotrowicz, K., Ziemianin, M., & Bielec-Bąkowska, Z. (2017). The long-range transport of Pinaceae pollen: An example in Kraków (southern Poland). Aerobiologia (Bologna), 33(1), 109–125.CrossRefGoogle Scholar
  43. Tezcan, D., Uzuner, N., Sule, T. C., Karaman, O., & Köse, S. (2003). Retrospective evaluation of epidermal skin prick tests in patients living in Aegean region. Allergologia et Immunopathologia, 31(4), 226–230.CrossRefGoogle Scholar
  44. Weber, R. W. (2003). Meteorologic variables in aerobiology. Immunology and Allergy Clinics of North America, 23(3), 411–422.CrossRefGoogle Scholar
  45. Wodehouse, R. P. (1959). Pollen grains. New York: Hofner Publishing Company.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • M. Kilic
    • 1
    • 4
    Email author
  • M. K. Altunoglu
    • 2
  • S. Akpınar
    • 2
  • G. E. Akdogan
    • 2
  • E. Taskin
    • 3
  1. 1.Department of Pediatrics, Division of Allergy and ImmunologyUniversity of FiratElazigTurkey
  2. 2.Department of Biology, Faculty of Arts and SciencesUniversity of KafkasKarsTurkey
  3. 3.Department of Pediatrics, Division of NeonatologyUniversity of FiratElazigTurkey
  4. 4.Cocuk Sagligi ve Hastalikları Anabilim DalıFırat Universitesi Tip FakultesiElazigTurkey

Personalised recommendations