Advertisement

Aerobiologia

pp 1–11 | Cite as

Correspondence between tree pollen emissions sources and pollen content of the ambient air

  • Lilia Kremenska
  • Victoria Rodinkova
  • Olena Bobrowska
  • Svitlana Kriklyva
  • Olena ToziukEmail author
  • Oleh Yermishev
  • Oleksiy Kremenskij
  • Andrii Yascholt
Original Paper

Abstract

The article presents the findings, regarding the comparison between the pollen spectrum of the atmosphere in the area and the species composition of pollen emitting trees within the operating range of a Hirst-type volumetric air sampler. The research has revealed how local and transported pollen influence the pollen content of the atmospheric bioaerosol. Even though only a small number of birch trees grow in the area, its pollen proved to be prevalent in the pollen spectrum, while only an insignificant amount of Quercus pollen was detected due to the remoteness of its emission sources from the air sampler. Despite the fact that the highest number of trees in the immediate vicinity of the air sampler belong to the genus Tilia (linden), its pollen made up less than 1% of the pollen spectrum due to entomophily of these trees. Locations of tree pollen emission sources in the immediate vicinity of the Burkard spore and pollen trap were mapped out.

Keywords

Airborne pollen spectrum Woody plants Pollen inventories Seasonal allergy 

Notes

Acknowledgements

Authors would like to express their gratitude to Prof. Estelle Levetin, Department Chairperson of Biological Science at The University of Tulsa, Oklahoma, USA, for suggestion on improving this manuscript and for Aliona Dratsion for editing this manuscript.

Funding

The study was supported by the statutory funds of the Scientific Research Center of National Pirogov Memorial Medical University, Vinnytsia, Ukraine, by the Department of Human and Animal Physiology of the Vasyl’ Stus Donetsk National University, Vinnytsia, Ukraine and by the Department of Systems Analysis, Computer Monitoring and Engineering Graphics of Vinnytsia National Technical University.

Compliance with ethical standards

Conflict of interest

No conflict of interest has been declared.

References

  1. Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., et al. (2014). Online coupled regional meteorology chemistry models in Europe current status and prospects. Atmospheric Chemistry and Physics.  https://doi.org/10.5194/acp-14-317-2014.Google Scholar
  2. Berger, U., Karatzas, K., Jaeger, S., Voukantsis, D., Sofiev, M., Brandt, O., et al. (2013). Personalized pollen-related symptom-forecast information services for allergic rhinitis patients in Europe. Allergy.  https://doi.org/10.1111/all.12181.Google Scholar
  3. Bondar, A. O. (2005). Лiciвничi ocнoви фopмyвaння виcoкoпpoдyктивниx нacaджeнь y дiбpoвax Пoдiлля: aвтopeф. диc. нa здoбyття нayк. cтyпeня д-pa c.-г. нayк: 06.03.03 “Лicoзнaвcтвo i лiciвництвo” (Branch base for the formation of high-yielding plantations in the oaks of Podillya), Kyiv, 36 p (in Ukrainian).Google Scholar
  4. Burger, G., Keyser, P. D., & Andrew, L. Ecology and management of oak woodlands and savannahs. Available from http://nativegrasses.utk.edu/publications/PB1812_rev.pdf, Accessed 13 March 2018.
  5. Carter, J. G., Cavan, G., Connelly, A., Guy, S., Handley, J., & Kazmierczak, A. (2015). Climate change and the city: Building capacity for urban adaptation. Progress in Planning.  https://doi.org/10.1016/j.progress.2013.08.001.Google Scholar
  6. Celenk, S., & Malyer, H. (2017). The occurrence of Ambrosia pollen in the atmosphere of Northwest Turkey: Investigation of possible source regions. International Journal of Biometeorology.  https://doi.org/10.1007/s00484-017-1328-y.Google Scholar
  7. Chapman, D. S., Makra, L., Albertini, R., Bonini, M., Paldy, A., Rodinkova, V., et al. (2016). Modelling the introduction and spread of non-native species: International trade and climate change drive ragweed invasion. Global Change Biology.  https://doi.org/10.1111/gcb.13220.Google Scholar
  8. Flonard, M., Lo, E., & Levetin, E. (2018). Increasing Juniperus virginiana L. pollen in the Tulsa atmosphere: Long-term trends, variability, and influence of meteorological conditions. International Journal of Biometeorology.  https://doi.org/10.1007/s00484-017-1444-8.Google Scholar
  9. Galan, C. S. (2011). Minimum requirements to manage aerobiological monitoring stations included in a national network involved in the EAN. International Aerobiology Newsletter, 72, 1–2.Google Scholar
  10. Galan, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia.  https://doi.org/10.1007/s10453-014-9335-5.Google Scholar
  11. Glassmeier, F., Possner, A., Vogel, B., Vogel, H., & Lohmann, U. (2017). A comparison of two chemistry and aerosol schemes on the regional scale and the resulting impact on radiative properties and liquid- and ice-phase aerosol–cloud interactions. Atmospheric Chemistry and Physics.  https://doi.org/10.5194/acp-17-8651-2017.Google Scholar
  12. Glukhov, A. Z., & Volodarez, S. A. (2010). Дo вивчeння фiтoнциднoї aктивнocтi дepeвниx pocлин в yмoвax ypбaнiзoвaнoгo cepeдoвищa. Пpoблeми eкoлoгiї тa oxopoни пpиpoди тexнoгeннoгo peгioнy (To the study of the phytoncide activity of woody plants in the urban environment. Problems of Ecology and Nature Protection of Technogenic Region), 1(10), 34–39 (in Ukrainian).Google Scholar
  13. Haberle, S. G., Bowman, D. M., Newnham, R. M., Johnston, F. H., Beggs, P. J., Buters, J., et al. (2014). The macroecology of airborne pollen in Australian and New Zealand urban areas. PLoS ONE.  https://doi.org/10.1371/journal.pone.0097925.Google Scholar
  14. Javier, Rodríguez-Rajo F., Fdez-Sevilla, D., Stach, A., & Jato, V. (2010). Assessment between pollen seasons in areas with different urbanization level related to local vegetation sources and differences in allergen exposure. Aerobiologia, 26(1), 1–14.  https://doi.org/10.1007/s10453-009-9138-2.CrossRefGoogle Scholar
  15. Klimenko, Y. O. (2010). Змiни нacaджeнь cтapoвинниx (Vegetational changes in old Memorial Parks in Vinnitsa Region. Ukrainian Botanical Journal), 67(2), 200–207 (in Ukrainian).Google Scholar
  16. Kubik-Komar, A., Piotrowska-Weryszko, K., Weryszko-Chmielewska, E., & Kaszewski, B. M. (2018). Analysis of Fraxinus pollen seasons and forecast models based on meteorological factors. Annals of Agricultural and Environmental Medicine.  https://doi.org/10.26444/aaem/80909.Google Scholar
  17. Kuchma, Y. J. (2010). Пoллинoз. Ceзoнный aллepгичecкий pинит. Пpoвизop (Pollinosis. Seasonal allergic rhinitis. Provizor), 15, 27–32 (in Ukrainian).Google Scholar
  18. Kukkonen, J., Olsson, T., Schultz, D. M., Baklanov, A., Klein, T., Miranda, A. I., et al. (2012). A review of operational, regional-scale, chemical weather forecasting models in Europe. Atmospheric Chemistry and Physics.  https://doi.org/10.5194/acp-12-1-2012.Google Scholar
  19. Kuprijanova, L. A., & Aleshina, L. A. (1972). Пыльцa двyдoльныx pacтeний флopы eвpoпeйcкoй чacти CCCP. Чacть 1. (Pollen and spores of plants that represent the flora of the European Part of USSR. Vol. 1). Moscow: Science (in Russian).Google Scholar
  20. Kuprijanova, L. A., & Aleshina, L. A. (1978). Пыльцa двyдoльныx pacтeний флopы eвpoпeйcкoй чacти CCCP. Чacть 2 (Pollen and spores of plants that represent the flora of the European Part of USSR. Vol. 2). Moscow: Science (in Russian).Google Scholar
  21. Lanzoni, C. (2009). Since 1932. In Practical materials of the 9th European Course on Basic Aerobiology, 2nd–9th September. Evora (Portugal).Google Scholar
  22. Makra, L., Matyasovszky, I., Tusnady, G., Wang, Y., Csepe, Z., Bozoki, Z., et al. (2016). Biogeographical estimates of allergenic pollen transport over regional scales: Common ragweed and Szeged, Hungary as a test case. Agricultural and Forest Meteorology.  https://doi.org/10.1016/j.agrformet.2016.02.006.Google Scholar
  23. Muzyka, G. I., & Grabovyj, V. M. (2014). Meтoдoлoгiя збepeжeння тa збaгaчeння виcoкoдeкopaтивниx й eкoлoгiчнo eфeктивниx зeлeниx нacaджeнь в icтopичниx пapкax. Aктyaльнi пpoблeми oзeлeнeння нaceлeниx мicць: ocвiтa, нayкa, виpoбництвo, миcтeцтвo фopмyвaння лaндшaфтy: Maтepiaли II Miжнapoднoї нayкoвo-пpaктичнoї кoнфepeнцiї (Methodology for preservation and enrichment of highly decorative and environmentally effective green plantations in historical parks. Actual problems of landscaping of inhabited places: Education, science, production, art of landscape formation: Materials of the II International Scientific and Practical Conference), Bila Cerkva, 4–6 June 2014, pp. 76–79 (in Ukrainian).Google Scholar
  24. Myszkowska, D., Jenner, B., Stępalska, D., & Czarnobilska, E. (2011). The pollen season dynamics and the relationship among some season parameters (start, end, annual total, season phases) in Kraków, Poland, 1991–2008. Aerobiologia (Bologna).  https://doi.org/10.1007/s10453-010-9192-9.Google Scholar
  25. Pitman, S. D., Daniels, C. B., & Ely, M. E. (2015). Green infrastructure as life support: Urban nature and climate change. Transactions of the Royal Society of South Australia.  https://doi.org/10.1080/03721426.2015.1035219.Google Scholar
  26. Prank, M., Sofiev, M., Siljamo, P., & Kauhaniemi, M. (2016). European Aeroallergen Network, increasing the number of allergenic pollen species in SILAM forecasts. Air Pollution Modeling and its Application, XXIV, 313–317.  https://doi.org/10.1007/978-3-319-24478-5_51.Google Scholar
  27. Pryhod’ko, O. B. (2010). Пилкoвий кaлeндap Зaпopiжжя (Pollen calendar of Zaporozhye). Zaporozhye medical journal, 12(1), 19–22. (in Ukrainian).Google Scholar
  28. Pukhlyk, B. M. (2009). Aлepгeни i пepeдyмoви виникнeння aлepгiчниx зaxвopювaнь. Дoвiдник з aлepгoлoгiї. (Allergens and the preconditions for the emergence of allergic diseases. Handbook of Allergy). Kyiv: Doktor-Media (in Ukrainian).Google Scholar
  29. Pukhlyk, B. M. (2013). Cитyaция c aллepгичecкими зaбoлeвaниями и aллepгoлoгиeй в Укpaинe (The situation with allergic diseases and allergology in Ukraine). Clinical Immunology. Allergology. Infectology, 2, 7–9. (in Ukrainian).Google Scholar
  30. Report about the condition of the natural environment of the Vinnytsia region in 2016. (2017). (Дoпoвiдь пpo cтaн пpиpoднoгo cepeдoвищa y Biнницькiй oблacтi, 2016 piк). Resource document. Ministry of Ecology and Natural Resources of Ukraine. https://menr.gov.ua/files/docs/Reg.report/%D0%92%D1%96%D0%BD%D0%BD%D0%B8%D1%86%D1%8C%D0%BA%D0%B0_%D0%94%D0%BE%D0%BF_2016.pdf. Accessed 22 January 2019 (in Ukrainian).
  31. Rodinkova, V. V. (2015). Airborne pollen spectrum and hay fever type prevalence in Vinnitsa, central Ukraine. Acta Agrobotanica.  https://doi.org/10.5586/aa.2015.037.Google Scholar
  32. Rodinkova, V., Kremenska, L., Palamarchuk, O., Motruk, I., Alexandrova, E., Dudarenko, O., et al. (2018). Seasonal changes in plant pollen concentrations over recent years in Vinnytsya. Central Ukraine: Acta Agrobotanica.  https://doi.org/10.5586/aa.1731.Google Scholar
  33. Rodinkova, V. V., Stremedlovskyy, B. A., Kremenska, L. V., & Gelman, E. G. (2013). Oцiнкa впливy пилкy дepeв тa злaкoвиx тpaв нa xapaктep poзвиткy ceзoннoї aлepгiї y пaцiєнтiв (Correlation between the Airborne Tree and Grass Pollen Counts and Hay Fever Symptoms of Allergic Patients). Bulletin of Biology and Medicine, 2(103), 3, 217–221 (in Ukrainian).Google Scholar
  34. Skjoth, C. A., Smith, M., Sikoparija, B., Stach, A., Myszkowska, D., Kasprzyk, I., et al. (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology.  https://doi.org/10.1016/j.agrformet.2010.05.002.Google Scholar
  35. Sofiev, M., Berger, U., Prank, M., Vira, J., Arteta, J., Belmonte, J., et al. (2015). MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe. Atmospheric Chemistry and Physics.  https://doi.org/10.5194/acp-15-8115-2015.Google Scholar
  36. Sofiev, M., & Bergmann, K.-C. (2013). Allergenic pollen: A review of the production, release, distribution and health impacts. Impacts Demand (Germany). Dordrecht: Springer.CrossRefGoogle Scholar
  37. Sofiev, M., Prank, M., & Vira, J. (2013). On the data assimilation for operational forecasting and re-analysis of allergenic pollen dispersion. Air Pollution Modeling and Its Application, XXII, 247–250.Google Scholar
  38. Sulmont, G. (2008). The pollen content of the air identification key [Electronic Resource]: Reseau National de Surveillance Aero-biologique. 1 CD-ROM. Production: Julie Collet. Studio Bouquet. Saint Etienne (France).Google Scholar
  39. Thibaudon, M. (2013). To a new standard for atmospheric pollen survey! International Aerobiology Newsletter, 2013, 75, 3. Available from https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxhZXJvYmlvbG9neWludGVybmF0aW9uYWx8Z3g6N2YyZThiZjE5MDVlNGQ5NQ.
  40. Trlica, A., Hutyra, L. R., Schaaf, C. L., Erb, A., & Wang, J. A. (2017). Albedo, land cover, and daytime surface temperature variation across an urbanized landscape. Earth’s Future.  https://doi.org/10.1002/2017ef000569.Google Scholar
  41. Vara, A., Fernández-Gonzalez, M., Aira, M. J., & Rodriguez-Rajo, F. J. (2016). Fraxinus pollen and allergen concentrations in Ourense (South-western Europe). Environmental Research.  https://doi.org/10.1016/j.envres.2016.02.014.Google Scholar
  42. Veriankaite, L., Siljamo, P., Sofiev, M., Sauliene, I., & Kukkonen, J. (2010). Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia.  https://doi.org/10.1007/s10453-009-9142-6.Google Scholar
  43. Weger, A., Pashley, C. H., Sikoparija, B., Skjoth, C. A., Kasprzyk, I., Grewling, L., et al. (2016). The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south EuropeLetty. International Journal of Biometeorology.  https://doi.org/10.1007/s00484-016-1170-7.Google Scholar
  44. Werchan, B., Werchan, M., Mücke, H. G., Gauger, U., Simoleit, A., Zuberbier, T., et al. (2017). Spatial distribution of allergenic pollen through a large metropolitan area. Environmental Monitoring and Assessment.  https://doi.org/10.1007/s10661-017-5876-8.Google Scholar
  45. Wilmers, F. (2008). Effect of vegetation on urban climate and buildings. Energy and Building.  https://doi.org/10.1016/0378-7788(90)90028-h.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PharmacyNational Pirogov Memorial Medical UniversityVinnytsiaUkraine
  2. 2.Department of Human and Animal PhysiologyVasyl` Stus Donetsk National UniversityVinnytsiaUkraine
  3. 3.Department of Systems Analysis, Computer Monitoring and Engineering GraphicsVinnytsia National Technical UniversityVinnytsiaUkraine

Personalised recommendations