Advertisement

Aerobiologia

pp 1–20 | Cite as

Pollen calendars of Cartagena, Lorca, and Murcia (Region of Murcia), southeastern Iberian Peninsula: 2010–2017

  • Belén Elvira-Rendueles
  • José M. Moreno
  • Isabel Costa
  • Daniel Bañón
  • Maria José Martínez-García
  • Stella Moreno-GrauEmail author
Original Paper
  • 35 Downloads

Abstract

Pollen allergens are one of the most important causes of respiratory allergies in industrialized countries. Aerobiological studies, including pollen and spore concentrations, allow for the defining of different palynomorph concentrations throughout the year. Pollen calendars summarize the aerobiological information of a locality in a single figure. They report which types of pollen are present at each time of the year and highlight the relative importance of some with respect to others. In this paper, the pollen calendar of three cities in the Region of Murcia, Cartagena, Lorca, and Murcia, is presented for the period 2010–2017. Sixty-three pollen types were identified in the bioaerosol of the Region of Murcia. Fourteen pollen types make up the pollen calendar of Cartagena, while 15 form those of both Lorca and Murcia. The spore types Cladosporium cladosporioides, Cladosporium herbarum, and Alternaria, have been included in the same format. The results show important qualitative and quantitative differences among the three cities. Lorca presents an aerobiological profile related to agricultural activities, while Murcia shows higher influence from anemophilous species coming from gardens and parks, and finally, given its proximity to the sea, Cartagena registers lower levels in most pollen types. The intensity of some of the pollen taxon and fungal types requires a deeper study of their responsibility for allergies in the area.

Keywords

Pollen calendar Aerobiology Airborne pollen Fungal spores Region of Murcia 

Notes

Acknowledgements

The authors wish to express their acknowledgements to Ms Paula Garcia Lopez, Region of Murcia Aerobiological Network technician. PTA2017-13571-1); the Foundation for Health Training and Research of the Region of Murcia (FFIS), which funded the network technician’s contract from 2013 to 2014; the Allergy and Clinical Immunology Service, Reina Sofía Hospital, Murcia, and Rafael Méndez Hospital, Lorca, for their assistance in the sampling process; and to the Official College of Pharmacists of Murcia. Thanks also to Laura Wettersten for the language revision.

References

  1. AENOR. (1988). Data elements and interchange formats. information interchange. representation of dates and times. (ISO 8601, 1st edition 1988 and technical corrigendum 1:1991).Google Scholar
  2. Aira, M. J., Rodríguez-Rajo, F. J., Fernández-González, M., Seijo, C., Elvira-Rendueles, B., Abreu, I., et al. (2013). Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993–2009. International Journal of Biometeorology, 57(2), 265–274.  https://doi.org/10.1007/s00484-012-0550-x.CrossRefGoogle Scholar
  3. Aira, M. J., Rodríguez-Rajo, F. J., Fernández-González, M., Seijo, C., Elvira-Rendueles, B., Gutiérrez-Bustillo, M., et al. (2012). Cladosporium airborne spore incidence in the environmental quality of the Iberian Peninsula. Grana, 51(4), 293–304.  https://doi.org/10.1080/00173134.2012.717636.CrossRefGoogle Scholar
  4. Alcaraz Ariza, F. (2007). Flora vascular y vegetación. In Atlas Global de la Región de Murcia (pp. 230–249). Murcia: La Verdad-CMM S.A. http://www.atlasdemurcia.com/index.php/secciones/10/flora-vascular-y-vegetacion/. Accessed June 19, 2018.
  5. Alcaraz Ariza, F. (2013). Biogeografía. In Geobotánica. Murcia: Universidad de Murcia. https://www.um.es/docencia/geobotanica/ficheros/tema04.pdf. Accessed October 8, 2018.
  6. Alcázar, P., García-Mozo, H., Trigo, M. M., Ruiz, L., González-Minero, F. J., Hidalgo, P., et al. (2011). Platanus pollen season in Andalusia (southern Spain): trends and modeling. Journal of Environmental Monitoring, 13(9), 2502.  https://doi.org/10.1039/c1em10355e.CrossRefGoogle Scholar
  7. Alonso Sarriá, F. (2007). El Clima. Atlas Global de la Región de Murcia (pp. 146–155). Murcia: La Verdad-CMM S.A.Google Scholar
  8. Anero-Bartolomé, M. T., Carabias-Martín, F., Carretero-Anibarro, P., Cordón-Marcos, C., Cuesta-Herranz, C., De Castro-Alfageme, S., et al. (2009). In S. de Castro Alfageme & D. Fernández González (Eds.), Aerobiología y polinosis en Castilla y León. Valladolid: Junta de Castilla y León.Google Scholar
  9. Asam, C., Hofer, H., Wolf, M., Aglas, L., & Wallner, M. (2015). Tree pollen allergens-an update from a molecular perspective. Allergy, 70(10), 1201–1211.  https://doi.org/10.1111/all.12696.CrossRefGoogle Scholar
  10. Ayuntamiento de Cartagena. (2018). Población de Cartagena. Ayuntamiento de Cartagena. https://www.cartagena.es/poblacion.asp. Accessed June 19, 2018.
  11. Ayuntamiento de Lorca. (2016). Población de Lorca. Ayuntamiento de Lorca. https://www.lorca.es/poblacion/poblacion.asp?id=128. Accessed June 19, 2018.
  12. Belchí-Hernández, J., Moreno-Grau, S., Bayo, J., Rosique, C., Bartolomé, B., & Moreno, J. (1997). Zygophyllum fabago L. A new source of allergenic pollen. Journal of Allergy and Clinical Immunology, 99(4), 493–496.  https://doi.org/10.1016/S0091-6749(97)70075-7 CrossRefGoogle Scholar
  13. Belchí-Hernández, J., Moreno-Grau, S., Sánchez-Gascón, F., Bayo, J., Elvira Rendueles, B., Bartolomé, B., et al. (1998). Sensitization to Zygophyllum fabago pollen. A clinical and immunologic study. Allergy, 53(3), 241–248.CrossRefGoogle Scholar
  14. Belmonte, J., De Linares, C., López, D. J., & Roure, J. M. (2017). Calendarios polínicos de Barcelona, Tarragona, Lérida, Gerona y Viella. Laboratori d’Anàlisis Palinològiques. Dpto. Biología Animal, Biología Vegetal y Ecología e Instituto de Ciencia y Tecnología Ambientales (ICTA). Universitat Autònoma de Barcelona. http://lap.uab.cat/aerobiologia/es/bibliography#calendars. Accessed May 15, 2018.
  15. Bensch, K., Braun, U., Groenewald, J. Z., & Crous, P. W. (2012). The genus Cladosporium. Studies in Mycology, 72, 1–401.  https://doi.org/10.3114/sim0003.CrossRefGoogle Scholar
  16. Bensch, K., Groenewald, J. Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B. A., et al. (2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology, 67, 1–94.  https://doi.org/10.3114/sim.2010.67.01.CrossRefGoogle Scholar
  17. Bicakci, A., Tosunoglu, A., Altunoglu, M. K., Saatcioglu, G., Keser, A. M., & Ozgokce, F. (2017). An aeropalynological survey in the city of Van, a high altitudinal region, East Anatolia-Turkey. Aerobiologia, 33(1), 93–108.  https://doi.org/10.1007/s10453-016-9453-3.CrossRefGoogle Scholar
  18. Boi, M., & Llorens, L. (2013). Annual pollen spectrum in the air of Palma de Mallorca (Balearic Islands, Spain). Aerobiologia, 29(3), 385–397.  https://doi.org/10.1007/s10453-013-9288-0.CrossRefGoogle Scholar
  19. Cariñanos, P., Casares-Porcel, M., & Quesada-Rubio, J.-M. (2014). Estimating the allergenic potential of urban green spaces: A case-study in Granada, Spain. Landscape and Urban Planning, 123, 134–144.  https://doi.org/10.1016/j.landurbplan.2013.12.009.CrossRefGoogle Scholar
  20. Castells, T., Arcalís, E., Márquez, J., García, A., Moreno-Grau, S., Bayo, J., et al. (1999). Pollen morphology of Zygophyllum fabago L. and its relationship with pollination. Geo-Eco-Trop, 22, 197–207.Google Scholar
  21. Centro Regional de Estadística de Murcia. (2018a). Datos Municipales Lorca. Portal Estadístico de la Región de Murcia. http://econet.carm.es/web/crem/inicio/-/crem/sicrem/PU_LorcaCifrasNEW/sec0.html. Accessed June 19, 2018.
  22. Centro Regional de Estadística de Murcia. (2018b). Datos Municipales Murcia. Portal Estadístico de la Región de Murcia. http://econet.carm.es/web/crem/inicio/-/crem/sicrem/PU_MurciaCifrasNEW/sec0.html. Accessed June 19, 2018.
  23. Comunidad Autónoma de la Región de Murcia. (2012). Estado actual del mercado inmobiliario. Informe 2012 Cartagena. Comunidad Autónoma de la Región de Murcia. https://www.carm.es/web/servlet/integra.servlets.Blob?ARCHIVO=CARTAGENA-Informe%20Municipal%202012.pdf&TABLA=ARCHIVOS&CAMPOCLAVE=IDARCHIVO&VALORCLAVE=90080&CAMPOIMAGEN=ARCHIVO&IDTIPO=60&RASTRO=c79$m22720,22805,40847. Accessed June 19, 2018.
  24. Cristofori, A., Cristofolini, F., & Gottardini, E. (2010). Twenty years of aerobiological monitoring in Trentino (Italy): assessment and evaluation of airborne pollen variability. Aerobiologia, 26(3), 253–261.  https://doi.org/10.1007/s10453-010-9161-3.CrossRefGoogle Scholar
  25. Dahl, A., Galan, C., Hajkova, L., Pauling, A., Sikoparija, B., Smith, M., et al. (2013). The onset, course and intensity of the pollen season. In M. Sofiev & K.-C. Bergmann (Eds.), Allergenic pollen: A review of the production, release, distribution and health impacts (pp. 29–70). Dordrecht: Springer.CrossRefGoogle Scholar
  26. De Linares, C., Belmonte, J., Canela, M., de la Guardia, C. D., Alba-Sanchez, F., Sabariego, S., et al. (2010). Dispersal patterns of Alternaria conidia in Spain. Agricultural and Forest Meteorology, 150(12), 1491–1500.  https://doi.org/10.1016/j.agrformet.2010.07.004.CrossRefGoogle Scholar
  27. De Linares, C., Delgado, R., Aira, M. J., Alcázar, P., Alonso-Pérez, S., Boi, M., et al. (2017). Changes in the Mediterranean pine forest: pollination patterns and annual trends of airborne pollen. Aerobiologia, 33(3), 375–391.  https://doi.org/10.1007/s10453-017-9476-4.CrossRefGoogle Scholar
  28. de Weger, L. A., Bergmann, K. C., Rantio-Lehtimäki, A., Dahl, Å., Buters, J., Déchamp, C., et al. (2013). Impact of Pollen. In M. Sofiev & K. C. Bergmann (Eds.), Allergenic pollen: A review of the production, release, distribution and health impacts (pp. 161–215). Dordrecht: Springer. www.springer.com/gb/book/9789400748804. Accessed June 19, 2018.
  29. Díaz de la Guardia, C., Alba, F., & Ruiz, L. (2008). Aerobiologia de Andalucia Oriental. Aerobiología y Polinosis en Castilla y León. Junta de Castilla y León. //www.saludcastillayleon.es/institucion/es/publicaciones-consejeria/buscador/aerobiologia-polinosis-castilla-leon. Accessed June 19, 2018.
  30. Edmonds, R. L. (Ed.). (1979). Aerobiology: The ecological systems approach. Stroudsburg, PA: Dowden, Hutchinson & Ross.Google Scholar
  31. El-Qutob López, F. D. (2016). Relevancia clínica de la sensibilización a polen de morera y estudio de su reactividad cruzada con otros pólenes. Universidad de Valencia. Retrieved from http://roderic.uv.es/bitstream/handle/10550/50211/Version_9.1.pdf?sequence=1&isAllowed=y. Accesed June 19, 2018.
  32. Elvira-Rendueles, B., Moreno, J., Garcia-Sanchez, A., Vergara, N., Martinez-Garcia, M. J., & Moreno-Grau, S. (2013). Air-spore in Cartagena, Spain: viable and non-viable sampling methods. Annals of agricultural and environmental medicine: AAEM, 20(4), 664–671.Google Scholar
  33. Elvira-Rendueles, B., Zapata, J. J., Miralles, J. C., Moreno, J. M., García-Sánchez, A., Negral, L., et al. (2017). Aerobiological importance and allergic sensitization to Amaranthaceae under arid climate conditions. Science of the Total Environment, 583, 478–486.  https://doi.org/10.1016/j.scitotenv.2017.01.119.CrossRefGoogle Scholar
  34. European Academy of Allergy and Clinical Immunology (AEECI). (2016). Advocacy Manifesto. Tackling the allergy crisis in Europe-concerted policy action needed. http://www.eaaci.org/images/media/EAACI_Manifesto_brochure_Interactive.pdf. Accessed May 15, 2018.
  35. Fernández-Illescas, F., Nieva, F. J. J., Silva, I., Tormo, R., & Muñoz, A. F. (2010). Pollen production of Chenopodiaceae species at habitat and landscape scale in Mediterranean salt marshes: An ecological and phenological study. Review of Palaeobotany and Palynology, 161(3), 127–136.  https://doi.org/10.1016/j.revpalbo.2010.03.006.CrossRefGoogle Scholar
  36. Flo, V., Bosch, J., Arnan, X., Primante, C., Martín González, A. M., Barril-Graells, H., et al. (2018). Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability. PLoS ONE, 13(1), e0191268.  https://doi.org/10.1371/journal.pone.0191268.CrossRefGoogle Scholar
  37. Frenguelli, G., Tedeschini, E., Veronesi, F., & Bricchi, E. (2002). Airborne pine (Pinus spp.) pollen in the atmosphere of Perugia (Central Italy): Behaviour of pollination in the two last decades. Aerobiologia, 18(3–4), 223–228.  https://doi.org/10.1023/a:1021320128458.CrossRefGoogle Scholar
  38. Galán, C., Alcázar, P., Cariñanos, P., Garcia, H., & Domínguez-Vilches, E. (2000). Meteorological factors affecting daily Urticaceae pollen counts in southwest Spain. International Journal of Biometeorology, 43(4), 191–195.CrossRefGoogle Scholar
  39. Galán, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., et al. (2017). Recommended terminology for aerobiological studies. Aerobiologia, 33(3), 293–295.  https://doi.org/10.1007/s10453-017-9496-0.CrossRefGoogle Scholar
  40. Galán, C., Cariñanos, P., Alcázar, P., & Domínguez, E. (2007). Management and Quality Manual. Córdoba: Servicio de Publicaciones, Universidad de Córdoba.Google Scholar
  41. García, J. J., Trigo, M. M., Cabezudo, B., Recio, M., Vega, J. M., Barber, D., et al. (1997). Pollinosis due to Australian pine (Casuarina): An aerobiologic and clinical study in southern Spain. Allergy, 52(1), 11–17.CrossRefGoogle Scholar
  42. Garcia-Mozo, H. (2011). The use of aerobiological data on agronomical studies. Annals of Agricultural and Environmental Medicine: AAEM, 18(1), 1–6.Google Scholar
  43. Gill, N. K., Rai, N. K., & Gill, S. (2016). Aerial pollen diversity in Punjab and their clinical significance in allergic diseases. Aerobiologia, 32(4), 635–643.  https://doi.org/10.1007/s10453-016-9437-3.CrossRefGoogle Scholar
  44. Gioulekas, D., Balafoutis, C., Damialis, A., Papakosta, D., Gioulekas, G., & Patakas, D. (2004). Fifteen years’ record of airborne allergenic pollen and meteorological parameters in Thessaloniki, Greece. International Journal of Biometeorology, 48(3), 128–136.  https://doi.org/10.1007/s00484-003-0190-2.CrossRefGoogle Scholar
  45. Gravesen, S. (1981). On the connection between the occurrence of airborne microfungi and allergy symptoms. Grana, 20(3), 225–227.  https://doi.org/10.1080/00173138109427671.CrossRefGoogle Scholar
  46. Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.  https://doi.org/10.1111/j.1744-7348.1952.tb00904.x.CrossRefGoogle Scholar
  47. Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J., et al. (2012). CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling: CliMond: Climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3(1), 53–64.  https://doi.org/10.1111/j.2041-210X.2011.00134.x.CrossRefGoogle Scholar
  48. Kruczek, A., Puc, M., & Wolski, T. (2017). Poaceae, Secale spp. and Artemisia spp. pollen in the air at two sites of different degrees of urbanisation. Annals of Agricultural and Environmental Medicine: AAEM, 24(1), 70–74.  https://doi.org/10.5604/12321966.1233895.CrossRefGoogle Scholar
  49. León-Ruiz, E., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2011). Study of Poaceae phenology in a Mediterranean climate. Which species contribute most to airborne pollen counts? Aerobiologia, 27(1), 37–50.  https://doi.org/10.1007/s10453-010-9174-y.CrossRefGoogle Scholar
  50. Mandal, J., Chakraborty, P., Roy, I., Chatterjee, S., & Gupta-Bhattacharya, S. (2008). Prevalence of allergenic pollen grains in the aerosol of the city of Calcutta, India: A two year study. Aerobiologia, 24(3), 151–164.  https://doi.org/10.1007/s10453-008-9095-1.CrossRefGoogle Scholar
  51. Martínez-Bracero, M., Alcázar, P., Díaz de la Guardia, C., González-Minero, F. J., Ruiz, L., Trigo Pérez, M. M., et al. (2015). Pollen calendars: A guide to common airborne pollen in Andalusia. Aerobiologia, 31(4), 549–557.  https://doi.org/10.1007/s10453-015-9385-3.CrossRefGoogle Scholar
  52. McInnes, R. N., Hemming, D., Burgess, P., Lyndsay, D., Osborne, N. J., Skjøth, C. A., et al. (2017). Mapping allergenic pollen vegetation in UK to study environmental exposure and human health. Science of the Total Environment, 599–600, 483–499.  https://doi.org/10.1016/j.scitotenv.2017.04.136.CrossRefGoogle Scholar
  53. Mediavilla-Molina, A., Angulo-Romero, J. A., Infante García-Pantaleón, F., Comtois, P., & Domínguez-Vilches, E. (1998). Preliminary statistical modeling of the presence of two conidial types of Cladosporium in the atmosphere of Córdoba, Spain. Aerobiologia, 14, 229–234.CrossRefGoogle Scholar
  54. Ministerio de Medio Ambiente y Medio Rural y Marino. Real Decreto 139/2011, de 4 de febrero, para el desarrollo del Listado de Especies Silvestres en Régimen de Protección Especial y del Catálogo Español de Especies Amenazadas (2011). https://www.boe.es/buscar/act.php?id=BOE-A-2011-3582. Accessed April 17, 2018.
  55. Moreno-Grau, S., Aira, M. J., Elvira-Rendueles, B., Fernández-González, M., Fernández-González, D., García-Sánchez, A., et al. (2016). Assessment of the Olea pollen and its major allergen Ole e 1 concentrations in the bioearosol of two biogeographical areas. Atmospheric Environment, 145, 264–271.  https://doi.org/10.1016/j.atmosenv.2016.09.040.CrossRefGoogle Scholar
  56. Moreno-Grau, S., Bayo, J., Rosique, C., Moreno, J., Moreno-Clavel, J., & Takahashi, Y. (1995). Concentration of atmospheric pollen in cartagena (Spain) from March 1993 to March 1994. Japanese Journal of Palynology, 45(2), 139–143.Google Scholar
  57. Moreno-Grau, S., & Montes Cepeda, A. (2015). De alérgenos aerovagantes: la Red Aerobiológica de la Región de Murcia. Academia de Veterinaria de la Región de Murcia. http://www.avrm.es/wp-content/uploads/2016/05/ALERGENOS-WEB.pdf. Accessed May 15, 2018.
  58. Myszkowska, D., Jenner, B., Stępalska, D., & Czarnobilska, E. (2011). The pollen season dynamics and the relationship among some season parameters (start, end, annual total, season phases) in Kraków, Poland, 1991–2008. Aerobiologia, 27(3), 229–238.  https://doi.org/10.1007/s10453-010-9192-9.CrossRefGoogle Scholar
  59. Necib, A., & Boughediri, L. (2016). Airborne pollen in the El-Hadjar town (Algeria NE). Aerobiologia, 32(2), 277–288.  https://doi.org/10.1007/s10453-015-9398-y.CrossRefGoogle Scholar
  60. O’Gorman, C. M., & Fuller, H. T. (2008). Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air. Atmospheric Environment, 42(18), 4355–4368.  https://doi.org/10.1016/j.atmosenv.2008.01.009.CrossRefGoogle Scholar
  61. Perez-Badia, R., Rapp, A., Morales, C., Sardinero, S., Galan, C., & Garcia-Mozo, H. (2010). Pollen spectrum and risk of pollen allergy in central Spain. Annals of Agricultural and Environmental Medicine: AAEM, 17(1), 139–151.Google Scholar
  62. Puchalska, P., Cases, B., Hernández-Arbeiza, J., García, M. C., Marina, M. L., & Fernández-Caldas, E. (2015). Identificación y caracterización de alérgenos del polen de Quercus ilex. Estudio de reactividad cruzada (p. 162). Presented at the Simposio Internacional de Vía Aérea Única, Sevilla. https://www.seaic.org/wp-content/plugins/download-monitor/download.php?id=JIACI-Vol25-sup2-2015.pdf. Accessed June 19, 2018.
  63. Rodríguez-Rajo, F. J., Iglesias, I., & Jato, V. (2004). Allergenic airborne pollen monitoring of Vigo (NW Spain) in 1995–2001. Grana, 43(3), 164–173.  https://doi.org/10.1080/00173130410020783.CrossRefGoogle Scholar
  64. Rojo, J., Rapp, A., Lara, B., Fernández-González, F., & Pérez-Badia, R. (2015). Effect of land uses and wind direction on the contribution of local sources to airborne pollen. Science of the Total Environment, 538, 672–682.  https://doi.org/10.1016/j.scitotenv.2015.08.074.CrossRefGoogle Scholar
  65. Rojo, J., Rapp, A., Lara, B., Sabariego, S., Fernández-González, F., & Pérez-Badia, R. (2016). Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk. Environmental Monitoring and Assessment, 188(3), 130.  https://doi.org/10.1007/s10661-016-5129-2.CrossRefGoogle Scholar
  66. Sánchez de Lorenzo-Cáceres, J. M. (2010). Palmeras de Murcia: Catálogo descriptivo e ilustrado de las palmeras de Murcia. Ayuntamiento de Murcia. http://www.ayto-murcia.es/medio-ambiente/parquesyjardines/inicio/imagenes/Palmeras_de_Murcia.pdf. Accessed June 10, 2018.
  67. Sánchez Martínez, J. J., Franco Leemhuis, J. A., & Vicente Colomer, M. J. (2008). Especies silvestres mediterráneas con valor ornamental: selección, producción, viverística y utilización en jardinería (FLORAMUR). Dirección General de Patrimonio Natural y Biodiversidad. Consejería de Agricultura y Agua. Región de Murcia. http://repositorio.upct.es/handle/10317/909. Accessed June 19, 2018.
  68. Schubert, K., Groenewald, J. Z., Braun, U., Dijksterhuis, J., Starink, M., Hill, C. F., et al. (2007). Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Studies in Mycology, 58, 105–156.  https://doi.org/10.3114/sim.2007.58.05.CrossRefGoogle Scholar
  69. SEAIC. (2017). Alergológica 2015. http://www.seaic.org/profesionales/alergologica-2015. Accessed May 22, 2018.
  70. Serhane, H., Amro, L., Sajiai, H., & Alaoui Yazidi, A. (2017). Prevalence of skin sensitization to pollen of date Palm in Marrakesh, Morocco. Journal of Allergy, 2017, 1–3.  https://doi.org/10.1155/2017/6425869.CrossRefGoogle Scholar
  71. Singh, N., Singh, U., Singh, D., Daya, M., & Singh, V. (2017). Correlation of pollen counts and number of hospital visits of asthmatic and allergic rhinitis patients. Lung India, 34(2), 127.  https://doi.org/10.4103/0970-2113.201313.CrossRefGoogle Scholar
  72. Skjøth, C. A., Sikoparija, B., & Jager, S. (2013). Pollen Sources. In M. Sofiev & K. C. Bergmann (Eds.), Allergenic pollen: A review of the production, release, distribution and health impacts (pp. 9–27). Dordrecht: Springer. www.springer.com/gb/book/9789400748804. Accessed June 19, 2018.
  73. Thibaudon, M., Caillaud, D., & Besancenot, J. P. (2013). Methods of studying airborne pollen and pollen calendars. Revue des Maladies Respiratoires, 30(6), 463–479.  https://doi.org/10.1016/j.rmr.2013.02.006.CrossRefGoogle Scholar
  74. Uğuz, U., Güvensen, A., Şengonca Tort, N., EşIz Dereboylu, A., & Baran, P. (2018). Volumetric analysis of airborne pollen grains in the city of Uşak, Turkey. Turkish Journal of Botany, 42, 57–72.  https://doi.org/10.3906/bot-1703-58.CrossRefGoogle Scholar
  75. Valero Santiago, A. L., & Cadahía García, Á. (Eds.). (2002). Encina / Roble. In Polinosis: polen y alergia. Barcelona: MRA ediciones-Laboratorios Menarini.Google Scholar
  76. Vallès-Xirau, J. (1987). Aportación al conocimiento citotaxonómico de ocho táxones ibéricos del género Artemisia L. (Asteraceae, Anthemideae). Anales del Jardín Botánico de Madrid, 44, 79–96.Google Scholar
  77. Varela, S., Subiza, J., Subiza, J. L., Rodríguez, R., García, B., Jerez, M., et al. (1997). Platanus pollen as an important cause of pollinosis. The Journal of Allergy and Clinical Immunology, 100(6 Pt 1), 748–754.CrossRefGoogle Scholar
  78. Voltolini, S., Minale, P., Troise, C., Bignardi, D., Modena, P., Arobba, D., et al. (2000). Trend of herbaceous pollen diffusion and allergic sensitisation in Genoa, Italy. Aerobiologia, 16(2), 245–249.  https://doi.org/10.1023/A:1007639030473.CrossRefGoogle Scholar
  79. Waisel, Y., Mienis, Z., Kosman, E., & Geller-Bernstein, C. (2004). The partial contribution of specific airborne pollen to pollen induced allergy. Aerobiologia, 20(3–4), 197–208.  https://doi.org/10.1007/s10453-004-1183-2.CrossRefGoogle Scholar
  80. Wielgolaski, F. E. (2001). Phenological modifications in plants by various edaphic factors. International Journal of Biometeorology, 45(4), 196–202.  https://doi.org/10.1007/s004840100100.CrossRefGoogle Scholar
  81. World Allergy Organization. (2013). WAO White Book on Allergy. Milwaukee, Wisconsin: WAO. http://www.worldallergy.org/UserFiles/file/WhiteBook2-2013-v8.pdf. Accessed October 8, 2018.
  82. Yew, S. M., Chan, C. L., Ngeow, Y. F., Toh, Y. F., Na, S. L., Lee, K. W., et al. (2016). Insight into different environmental niches adaptation and allergenicity from the Cladosporium sphaerospermum genome, a common human allergy-eliciting Dothideomycetes. Scientific Reports, 6, 27008.  https://doi.org/10.1038/srep27008.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Belén Elvira-Rendueles
    • 1
  • José M. Moreno
    • 1
  • Isabel Costa
    • 1
  • Daniel Bañón
    • 1
  • Maria José Martínez-García
    • 1
  • Stella Moreno-Grau
    • 1
    Email author
  1. 1.Department of Chemical and Environmental EngineeringTechnical University of CartagenaCartagenaSpain

Personalised recommendations