Advertisement

Aerobiologia

pp 1–11 | Cite as

Car cabin filters as sampling devices to study bioaerosols using eDNA and microbiological methods

  • Kirsty V. Hurley
  • Laura Wharton
  • Mike J. Wheeler
  • Carsten A. Skjøth
  • Christian Niles
  • Mary C. HansonEmail author
Original Paper
  • 47 Downloads

Abstract

The aim of this study was to examine whether bioaerosols could be isolated and quantified from used car cabin filters. Car cabin filters are widely available and can provide a vast untapped resource for sampling of bioaerosols in areas with enhanced air pollution. We developed a test system where we exposed car cabin filters to birch pollen under compressed air to represent airflow onto the filter. The flow of pollen within the test system was confirmed by microscopy and real-time PCR. Testing of extraction methods was performed on the most prevalent types of filters in UK cars and confirmed it was possible to extract and quantify viable fungi, birch pollen or proteins from car filters. The main challenge of their use is envisaged to be the lack of temporal resolution as car cabin filters are not routinely changed at intervals greater than 1 year; however, the systematic recording of the different routes driven during the sampling interval has been enabled through the common use of GPS, smartphones or similar technologies. Car filters therefore provide substantial possibilities to monitor exposure of harmful bioaerosols in the polluted traffic regions defined by the road network. This method could also be applied to studying allergen exposure associated with bioaerosols and their delivery into the human respiratory system. These findings demonstrate that car cabin filters have the potential to be used to isolate and quantify a range of bioaerosols including pollen and fungi, as well as fractions of bioaerosols, such as proteins.

Keywords

Bioaerosols Pollen Fungi Filters Environment Allergy 

Notes

Acknowledgements

Thanks are given to the University of Worcester for funding this research and to S. John and E. Edwards for their technical assistance.

References

  1. Agranovski, I. E., Usachev, E. V., Agranovski, E., & Usacheva, O. V. (2017). Miniature PCR based portable bioaerosol monitor development. Journal of Applied Microbiology, 122(1), 129–138.CrossRefGoogle Scholar
  2. Bashir, M. E. H., Lui, J. H., Palnivelu, R., Naclerio, R. M., & Preuss, D. (2013). Pollen lipidomics: Lipid profiling exposes a notable diversity in 22 allergenic pollen and potential biomarkers of the allergic immune response. PLoS ONE, 8(2), e57566.  https://doi.org/10.1371/journal.pone.0057566.CrossRefGoogle Scholar
  3. Brown, H. M. (1991). Mobile slit sampler for pollen and spore sampling on motorways. Aerobiologia, 7, 69–72.CrossRefGoogle Scholar
  4. Brown, J. K. M., & Hovmøller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297(5581), 537–541.  https://doi.org/10.1126/science.1072678.CrossRefGoogle Scholar
  5. Bublin, M., Eiwegger, T., & Breiteneder, H. (2014). Do lipids influence the allergic sensitization process? Journal of Allergy and Clinical Immunology, 134(3), 521–529.  https://doi.org/10.1016/j.jaci.2014.04.015.CrossRefGoogle Scholar
  6. Buters, J., Prank, M., Sofiev, M., Pusch, G., Albertini, R., Annesi-Maesano, I., et al. (2015). Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. Journal of Allergy and Clinical Immunology, 136(1), 87–95.e6.  https://doi.org/10.1016/j.jaci.2015.01.049.CrossRefGoogle Scholar
  7. Buters, J. T. M., Weichenmeier, I., Ochs, S., Kreyling, W., Pusch, G., Boere, A. J. F., et al. (2010). The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy, 65, 850–858.CrossRefGoogle Scholar
  8. Combs, L. G., Warren, J. E., Huynh, V., Castaneda, J., Golden, T. D., & Roby, R. K. (2015). The effects of metal ion PCR inhibitors on results obtained with the Quantifiler(®) human DNA quantification Kit. Forensic Science International: Genetics, 19, 180–189.  https://doi.org/10.1016/j.fsigen.2015.06.013.CrossRefGoogle Scholar
  9. D’amato, G., Cecchi, L., Bonini, S., Nunes, C., nnesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62(9), 976–990.CrossRefGoogle Scholar
  10. Despres, V. R., Nowoisky, J. F., Klose, M., Conrad, R., Andreae, M. O., & Poschl, U. (2007). Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences, 4, 1127–1141.CrossRefGoogle Scholar
  11. Douglas, P., Robertson, S., Gay, R., Hansell, A. L., & Gant, T. W. (2017). A systematic review of the public health risks of bioaerosols from intensive farming. International Journal of Hygiene and Environmental Health.  https://doi.org/10.1016/j.ijheh.2017.10.019.Google Scholar
  12. Ghosh, D., Chakraborty, P., Gupta, J., Biswas, A., Roy, I., Das, S., et al. (2012). Associations between pollen counts, pollutants, and asthma-related hospital admissions in a high-density Indian metropolis. Journal of Asthma, 49(8), 792–799.  https://doi.org/10.3109/02770903.2012.716473.CrossRefGoogle Scholar
  13. Gilles, S., Mariani, V., Bryce, M., Mueller, M. J., Ring, J., Behrendt, H., et al. (2009). Pollen allergens do not come alone: pollen associated lipid mediators (PALMS) shift the human immune systems towards a TH2-dominated response. Allergy, Asthma and Clinical Immunology, 5, 3.  https://doi.org/10.1186/1710-1492-5-3.CrossRefGoogle Scholar
  14. Gleason, J. A., Bielory, L., & Fagliano, J. A. (2014). Associations between ozone, PM2.5, and four pollen types on emergency department pediatric asthma events during the warm season in New Jersey: A case-crossover study. Environmental Research, 132, 421–429.  https://doi.org/10.1016/j.envres.2014.03.035.CrossRefGoogle Scholar
  15. Gonzalez-Barcala, F. J., Aboal-Viñas, J., Aira, M. J., Regueira-Méndez, C., Valdes-Cuadrado, L., Carreira, J., et al. (2013). Influence of pollen level on hospitalizations for asthma. Archives Environmental Occupational Health, 68(2), 66–71.  https://doi.org/10.1080/19338244.2011.638950.CrossRefGoogle Scholar
  16. Grinn-Gofroń, A., Nowosad, J., Bosiacka, B., Camacho, I., Pashley, C., Belmonte, J., et al. (2019). Airborne Alternaria and Cladosporium fungal spores in Europe: Forecasting possibilities and relationships with meteorological parameters. Science of the Total Environment, 653, 938–946.  https://doi.org/10.1016/J.SCITOTENV.2018.10.419.CrossRefGoogle Scholar
  17. He, X., Brem, B. T., Bahk, Y. K., Kuo, Y., & Wang, J. (2016). Effects of relative humidity and particle type on the performance and service life of automobile cabin air filters. Aerosol Science and Technology, 50(6), 542–554.CrossRefGoogle Scholar
  18. Heinzerling, L. M., Burbach, G. J., Edenharter, G., Bachert, C., Bindslev-Jensen, C., Bonini, S., et al. (2009). GA2LEN skin test study I: GA2LEN harmonization of skin prick testing: novel sensitization patterns for inhalant allergens in Europe. Allergy, 64(10), 1498–1506.  https://doi.org/10.1111/j.1398-9995.2009.02093.x.CrossRefGoogle Scholar
  19. Hirst, J. M. (1952). An automatic volumetric spore trap. Annals Applied Biology, 39, 257–265.CrossRefGoogle Scholar
  20. Hwang, G. B., et al. (2015). Antimicrobial air filters using natural Euscaphis japonica nanoparticles. PLoS ONE, 10(5), 126481.Google Scholar
  21. Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations: A review. Science of the Total Environment, 326(1–3), 151–180.CrossRefGoogle Scholar
  22. Juozaitis, A., Willeke, K., Grinshpun, S. A., & Donnelly, J. (1994). Impaction onto a glass slide or agar versus impingement into a liquid for the collection and recovery of airborne microorganisms. Applied and Environmental Microbiology, 60(3), 861–870.Google Scholar
  23. Kim, K.-H., Kabir, E., & Jahan, S. A. (2017). Airborne bioaerosols and their impact on human health. Journal of Environmental Sciences.  https://doi.org/10.1016/j.jes.2017.08.027.Google Scholar
  24. Lee, H., Lee, S., Lee, H. M., Kim, S., Kim, Y. P., & Kang, H. (2010). Identification of airborne bacterial and fungal community structures in an urban area by T-RFLP analysis and quantitative real-time PCR. Science of the Total Environment, 408(6), 1349–1357.CrossRefGoogle Scholar
  25. Luhung, I., Wu, Y., Ng, C. K., Miller, D., Cao, B., & Chang, V. W. (2015). Protocol improvements for low concentration DNA-based bioaerosol sampling and analysis. PLoS ONE, 10(11), e0141158.CrossRefGoogle Scholar
  26. Marchetti, P., Pesce, G., Villani, S., Antonicelli, L., Ariano, R., Attena, F., et al. (2017). Pollen concentrations and prevalence of asthma and allergic rhinitis in Italy: Evidence from the GEIRD study. Science of the Total Environment, 584–585, 1093–1099.  https://doi.org/10.1016/j.scitotenv.2017.01.168.CrossRefGoogle Scholar
  27. Muala, A., Sehlstedt, M., Bion, A., Osterlund, C., Bosson, J. A., Behndig, A. F., et al. (2014). Assessment of the capacity of vehicle cabin air inlet filters to reduce diesel exhaust-induced symptoms in human volunteers. Environmental Health, 13(1), 16.CrossRefGoogle Scholar
  28. Müller-Germann, I., Vogel, B., Vogel, H., Pauling, A., Fröhlich-Nowoisky, J., Pöschl, U., et al. (2015). Quantitative DNA analyses for airborne birch pollen. PLoS ONE, 10(10), e0140949.CrossRefGoogle Scholar
  29. Niedzielski, T., Skjøth, C., Werner, M., Spallek, W., Witek, M., Sawiński, T., et al. (2017). Are estimates of wind characteristics based on measurements with Pitot tubes and GNSS receivers mounted on consumer-grade unmanned aerial vehicles applicable in meteorological studies? Environmental Monitoring and Assessment, 189(9), 431.  https://doi.org/10.1007/s10661-017-6141-x.CrossRefGoogle Scholar
  30. Op De Beeck, M., Lievens, B., Busschaert, P., Declerck, S., Vangronsveld, J., & Colpaert, J. (2014). Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS ONE, 9(6), 1–11.CrossRefGoogle Scholar
  31. Park, J. H., Yoon, K. Y., Noh, K. C., Byeon, J. H., & Hwang, J. (2010). Removal of PM2.5 entering through the ventilation duct in an automobile using a carbon fiber ionizer-assisted cabin air filter. Journal of Aerosol Science, 41(10), 935–943.CrossRefGoogle Scholar
  32. Pollock, J., Shi, L., & Gimbel, R. W. (2017). Outdoor environment and pediatric asthma: An update on the evidence from North America. Canadian Respiratory Journal, 2017, 1–16.CrossRefGoogle Scholar
  33. Radosevich, J. L., Wilson, W. J., Shinn, J. H., DeSantis, T. Z., & Andersen, G. L. (2002). Development of a high-volume aerosol collection system for the identification of air-borne micro-organisms. Letters in Applied Microbiology, 34(3), 162–167.CrossRefGoogle Scholar
  34. Saikin, A. M., et al. (2017). Air quality within vehicles. Russian Engineering Research, 37(5), 424–427.CrossRefGoogle Scholar
  35. Savage, D., Barbetti, M. J., MacLeod, W. J., Salam, M. U., & Renton, M. (2012). Mobile traps are better than stationary traps for surveillance of airborne fungal spores. Crop Protection, 36, 23–30.  https://doi.org/10.1016/j.cropro.2012.01.015.CrossRefGoogle Scholar
  36. Schrader, C., Schielke, A., Ellerbroek, L., & Johne, R. (2012). PCR inhibitors – occurrence, properties and removal. Journal of Applied Microbiology, 113, 1014–1026.  https://doi.org/10.1111/j.1365-2672.2012.05384.x.CrossRefGoogle Scholar
  37. Sikoparija, B., Skjøth, C. A., Celenk, S., Testoni, C., Abramidze, T., Alm Kübler, K., et al. (2017). Spatial and temporal variations in airborne Ambrosia pollen in Europe. Aerobiologia, 33(2), 181–189.  https://doi.org/10.1007/s10453-016-9463-1.CrossRefGoogle Scholar
  38. Sim, K. M., et al. (2014). Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles. Science of the Total Environment, 493, 291–297.CrossRefGoogle Scholar
  39. Skjøth, C. A., Baker, P., Sadyś, M., & Adams-Groom, B. (2015). Pollen from alder (Alnus sp.), birch (Betula sp.) and oak (Quercus sp.) in the UK originate from small woodlands. Urban Climate, 14(3), 414–428.CrossRefGoogle Scholar
  40. Skjøth, C. A., Damialis, A., Belmonte, J., De Linares, C., Fernández-Rodríguez, S., Grinn-Gofroń, A., et al. (2016). Alternaria spores in the air across Europe: Abundance, seasonality and relationships with climate, meteorology and local environment. Aerobiologia, 32(1), 3–22.  https://doi.org/10.1007/s10453-016-9426-6.CrossRefGoogle Scholar
  41. Skjøth, C. A., Ørby, P. V., Becker, T., Geels, C., Schlünssen, V., Sigsgaard, T., et al. (2013). Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences, 10(1), 541–554.CrossRefGoogle Scholar
  42. Smith, M., Jäger, S., Berger, U., Sikoparija, B., Hallsdottir, M., Sauliene, I., et al. (2014). Geographic and temporal variations in pollen exposure across Europe. Allergy, 69(7), 913–923.CrossRefGoogle Scholar
  43. Snyder, A. P., McClennen, W. H., Dworzanski, J. P., & Meuzelaar, H. L. (1990). Characterization of underivatized lipid biomarkers from microorganisms with pyrolysis short-column gas chromatography/ion trap mass spectrometry. Analytical Chemistry, 62(23), 2565–2573.CrossRefGoogle Scholar
  44. Tolchinsky, A. D., Sigaev, V. I., Varfolomeev, A. N., Uspenskaya, S. N., Cheng, Y. S., & Su, W. (2011). Performance evaluation of two personal bioaerosol samplers. Journal of Environmental Science and Health, Part A, 46(14), 1690–1698.CrossRefGoogle Scholar
  45. Torkko, P., Katila, M., & Kontro, (2003). Gas-chromatographic lipid profiles in identification of currently known slowly growing environmental mycobacteria. Journal of Medical Microbiology, 52(4), 315–323.  https://doi.org/10.1099/jmm.0.05113-0.CrossRefGoogle Scholar
  46. Werchan, B., Werchan, M., Mücke, H.-G., Gauger, U., Simoleit, A., Zuberbier, T., et al. (2017). Spatial distribution of allergenic pollen through a large metropolitan area. Environmental Monitoring and Assessment, 189(4), 169.  https://doi.org/10.1007/s10661-017-5876-8.CrossRefGoogle Scholar
  47. West, J. S., & Kimber, R. B. E. (2015). Innovations in air sampling to detect plant pathogens. Annals of Applied Biology, 166(1), 4–17.CrossRefGoogle Scholar
  48. Willers, C., Jansen van Rensburg, P. J., & Claassens, S. (2015). Microbial signature lipid biomarker analysis: An approach that is still preferred, even amid various method modifications. Journal of Applied Microbiology, 118(6), 1251–1263.CrossRefGoogle Scholar
  49. Wong, L. T., Mui, K. W., Cheung, C. T., Chan, W. Y., Lee, Y. H., & Cheung, C. L. (2011). In-cabin exposure levels of carbon monoxide, carbon dioxide and airborne particulate matter in air-conditioned buses of Hong Kong. Indoor and Built Environment, 20(4), 464–470.CrossRefGoogle Scholar
  50. Xu, B., & Zhu, Y. (2009). Quantitative analysis of the parameters affecting In-cabin to On-roadway (I/O) ultrafine particle concentration ratios. Aerosol Science and Technology, 43(5), 400–410.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V.  2019

Authors and Affiliations

  1. 1.Institute of Science and the EnvironmentUniversity of WorcesterWorcesterUK

Personalised recommendations