Advertisement

Looking for environmental and endocrine factors inducing the transformation of Sicyopterus lagocephalus (Pallas 1770) (Teleostei: Gobiidae: Sicydiinae) freshwater prolarvae into marine larvae

  • Céline EllienEmail author
  • Romain Causse
  • Ugo Werner
  • Nils Teichert
  • Karine Rousseau
Article

Abstract

During their ontogenetic development, many species of fishes undergo drastic changes which may be defined as true metamorphosis when they are induced by thyroid hormones. Sicyopterus lagocephalus is an amphidromous goby that has to change biome twice during its life cycle. The first biome shift occurs few hours after hatching in the river. The aim of the present study is to determine what external/environmental and internal/endocrine factors induce the transformation of freshwater prolarvae into marine larvae. First, we experimentally determined that the minimum salinity threshold inducing the transformation of all the prolarvae into marine larvae is 1.5, whereas a salinity of 0.2 induces the transformation of a few prolarvae. Similarly, an 18-h immersion in seawater before the return to freshwater is enough to induce the transformation of all the prolarvae into marine larvae, even though an immersion for 3 h can induce the transformation of a few prolarvae. Furthermore, we demonstrated that a simulated increase in the osmotic pressure of freshwater does not trigger the transformation of the prolarvae into marine larvae. Our study also reveals that among the various constituent salts of seawater, it is primarily NaCl and K+ that induce the transformation of the prolarvae, leading to the assumption that the membrane protein Na+/K+-ATPase is activated simultaneously with the prolarval transformation. Finally, we showed that thyroid hormones and cortisol are not involved in the prolarval transformation, leading to the conclusion that this first transformation in the life cycle of S. lagocephalus cannot be considered as a true metamorphosis.

Keywords

Amphidromy Metamorphosis Salinity Osmotic pressure Thyroid hormones Cortisol 

Notes

Acknowledgements

This work was supported by the French National Museum of Natural History (MNHN) through the Action Thématique du Museum “Cycles Biologiques” funding programme. The authors thank Prof. Philippe Keith for proofing the draft and for his advices during our work. The authors thank David Lord, accredited advanced translator, for the time he spent on proofing our manuscript and for his invaluable help in improving the quality of the text. We also thank the two reviewers for their useful comments that helped us improving the quality of the manuscript.

Authors’ contributions

All authors contributed to the study conception and design. Data collection was performed by CE, UW, RC and NT. The experiments were carried out by CE, UW and RC. The first draft of the manuscript was written by CE, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

References

  1. Aboussouan A (1969) Note sur les “bichiques” de l’île de la Réunion. Rec Trav Sta Mar Endoume, Fasc hors serie 9:25–31Google Scholar
  2. Augspurger JM, Warburton M, Closs GP (2017) Life-history plasticity in amphidromous and catadromous fishes: a continuum of strategies. Rev Fish Biol Fisher 27:177–192CrossRefGoogle Scholar
  3. Cuvier G, Valenciennes A (1837) Histoire naturelle des poissons. Tome XII. Levrault (ed) Paris, FranceGoogle Scholar
  4. de Jesus EG, Hirano T, Inui Y (1991) Changes in cortisol and thyroid hormone concentrations during early development and metamorphosis in the japanese Flounder, Paralichthys olivaceus. Gen Comp Endocr 82:369–376CrossRefGoogle Scholar
  5. Delacroix P (1987) Etude des « bichiques » , juvéniles de Sicyopterus lagocephalus (Pallas), poisson Gobiidae migrateur des rivières de la Réunion (océan Indien): exploitation, répartition, biologie de la reproduction et de la croissance. Université de la Réunion, Saint Denis, La Réunion, Thesis, p 144Google Scholar
  6. Delacroix P, Champeau A (1992) Ponte en eau douce de Sicyopterus lagocephalus (Pallas), poisson Gobiidae amphibionte des rivières de la Réunion. Hydroécologie Appliquée 4:49–63CrossRefGoogle Scholar
  7. Ellien C, Valade P, Bosmans J, Taillebois L, Teichert N, Keith P (2011) Influence of salinity on larval development of Sicyopterus lagocephalus (Pallas, 1770) (Gobioidei). Cybium 35(4):381–390Google Scholar
  8. Ellien C, Werner U, Keith P (2016) Morphological changes during the transition from freshwater to sea water in an amphidromous goby, Sicyopterus lagocephalus (Pallas 1770) (Teleostei). Ecol Fresh Fish 25:48–59.  https://doi.org/10.1111/eff.12190 CrossRefGoogle Scholar
  9. Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85(1):97–177CrossRefGoogle Scholar
  10. Heyland A, Moroz LL (2005) Cross-kingdom hormonal signalling: an insight from thyroid hormone functions in marine larvae. J Exp Biol 208:4355–4361.  https://doi.org/10.1242/jeb.01877 CrossRefPubMedGoogle Scholar
  11. Hoareau T, Lecomte-Finiger R, Grondin H, Conand C, Berrebi P (2007) Oceanic larval life of La Reunion “bichiques” amphidromous gobiid post-larvae. Mar Ecol Prog Ser 333:303–308CrossRefGoogle Scholar
  12. Hwang P, Lee T, Lin L (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301(4):R1206CrossRefGoogle Scholar
  13. Iida M, Watanabe S, Yamada Y, Lord C, Keith P, Tsukamoto K (2010) Survival and behavioral characteristics of amphidromous goby larvae of Sicyopterus japonicus (Tanaka, 1909) during their downstream migration. J Exp Mar Biol Ecol 383(1):17–22CrossRefGoogle Scholar
  14. Iida M, Kondo M, Tabouret H, Maeda K, Pécheyran C, Hagiwara A, Keith P, Tachihara K (2017) Specific gravity and migratory patterns of amphidromous gobioid fish from Okinawa Island, Japan. J Exp Mar Biol Ecol 486:160–169CrossRefGoogle Scholar
  15. Jonsson B, Jonsson N (1993) Partial migration: niche shift versus sexual maturation in fishes. Rev Fish Biol Fisher 3:348–365CrossRefGoogle Scholar
  16. Keith P (2003) Biology and ecology of amphidromous Gobiidae in the Indo-Pacific and the Caribbean regions. J Fish Biol 63:831–847CrossRefGoogle Scholar
  17. Keith P, Lord C (2011) Tropical freshwater gobies: Amphidromy as a life-cycle. In: Patzner RA, Van Tassel JL, Kovačić M, Kapoor BG (eds) The biology of gobies. New Hampshire, CRC Press, Science Publishers Inc, Enfield, pp 119–128CrossRefGoogle Scholar
  18. Keith P, Galewski T, Cattaneo-Berrebi G, Hoareau T, Berrebi P (2005) Ubiquity of Sicyopterus lagocephalus (Teleostei: Gobioidei) and phylogeography of the genus Sicyopterus in the Indo-Pacific area inferred from mitochondrial cytochrome b gene. Mol Phylogenet Evol 37:721–732CrossRefGoogle Scholar
  19. Keith P, Marquet G, Valade P, Bosc P, Vigneux E (2006) Atlas des poissons et des crustacés d’eau douce des Comores, Mascareignes et Seychelles. MNHN, Paris, p 250Google Scholar
  20. Keith P, Hoareau T, Lord C, Ah-Yane O, Gimmoneau G, Robinet T, Valade P (2008) Characterisation of post-larval to juvenile stages, metamorphosis, and recruitment of an amphidromous goby, Sicyopterus lagocephalus (Pallas, 1767) (Teleostei: Gobiidae: Sicydiinae). Mar Fresh Res 59(10):876–889CrossRefGoogle Scholar
  21. Lagarde R, Teichert N, Faivre L, Grondin H, Magalon H, Pirog A, Valade P, Ponton D (2018) Artificial daily fluctuations of river discharge affect the larval drift and survival of a tropical amphidromous goby. Ecol Fresh Fish 27(3):646–659CrossRefGoogle Scholar
  22. Lord C, Lorion J, Dettai A, Watanabe S, Tsukamoto K, Cruaud C, Keith P (2012) Phylogeography of three amphidromous Sicyopterus species (Teleostei: Gobioidei: Sicydiinae): extensive genetic connectivity with breaks identified at biogeographical barriers. Mar Ecol Prog Ser 455:269–285CrossRefGoogle Scholar
  23. McDowall RM (1988) Diadromy in fishes: migrations between freshwater and marine environments. In: McDowall RM (ed) (London) Croom HelmGoogle Scholar
  24. McDowall RM (1992) Diadromy: origins and definition of terminology. Copeia 1992:248–251CrossRefGoogle Scholar
  25. McDowall RM (2008) Early hatch: a strategy for safe downstream larval transport in amphidromous gobies. Rev Fish Biol Fisher 19(1):1–8CrossRefGoogle Scholar
  26. Paris M, Laudet V (2008) Metamorphosis in developmental stage: metamorphosis in chordates. Genesis 46:657–672.  https://doi.org/10.1002/dvg.20443 CrossRefPubMedGoogle Scholar
  27. Ranasinghe R, Pattiaratchi C (2003) The seasonal closure of tidal inlets: causes and effects. Coast Eng J 45(04):601–627CrossRefGoogle Scholar
  28. Rousseau K, Dufour S (2012) Introduction to fish first and secondary metamorphoses. In: Dufour S, Rousseau K, Kapoor BG (eds) Metamorphosis in fish. CRC Press, Science Publishers, Edenbridge Ltd., Enfield, pp 1–11Google Scholar
  29. Roy PS, Williams RJ, Jones AR, Yassini I, Gibbs PJ, Coates B, West RJ, Scanes PR, Hudson JP, Nichol S (2001) Structure and function of south-east Australian estuaries. Estuar Coast Shelf Sci 53(3):351–384CrossRefGoogle Scholar
  30. Sakai H, Arai T, Imai C, Sugiyama H, Sato H, Jeon SR (2004) Landlocked populations of an amphidromous goby, Rhino-gobius sp.CO. Japan. Rhino-gobius spCO Japan. J Ichthyol 51(2):175–180Google Scholar
  31. Sanchez-Garces GC (2017) A review of amphidromous freshwater fishes of the Choco biogeographical region (Colombia and Ecuador): diversity, ecology, fisheries and conservation. Cybium 41(2):157–169Google Scholar
  32. Taillebois L, Keith P, Valade P, Torres P, Baloche S, Dufour S, Rousseau K (2011) Involvement of thyroid hormones in the control of larval metamorphosis in Sicyopterus lagocephalus (Teleostei: Gobioidei) at the time of river recruitment. Gen Comp Endocr 173(2):281–288CrossRefGoogle Scholar
  33. Teichert N, Keith P, Valade P, Richarson M, Metzger M, Gaudin P (2013) Breeding pattern and nest guarding in Sicyopterus lagocephalus, a widespread amphidromous Gobiidae. J Ethol 31:239–247CrossRefGoogle Scholar
  34. Teichert N, Valade P, Lim P, Dauba F, Labonne J, Richarson M, Bosc P, Gaudin P (2014a) Habitat selection in amphidromous Gobiidae of Reunion Island: Sicyopterus lagocephalus (Pallas, 1770) and Cotylopus acutipinnis (Guicherot, 1863). Environ Biol Fishes 97(3):255–266CrossRefGoogle Scholar
  35. Teichert N, Valade P, Frostier A, Lagarde R, Gaudin P (2014b) Reproductive biology of an amphidromous goby, Sicyopterus lagocephalus, in La Réunion Island. Hydrobiologia 726(1):123–141CrossRefGoogle Scholar
  36. Teichert N, Valade P, Grondin H, Trichet E, Sardenne F, Gaudin P (2016) Pelagic larval traits of the amphidromous goby Sicyopterus lagocephalus display seasonal variations related to temperature in La Reunion Island. Ecol Fresh Fish 25(2):234–247.  https://doi.org/10.1111/eff.12205 CrossRefGoogle Scholar
  37. Vaillant L (1890) Remarques sur la pêche de la Bichique à l’île de la Réunion. Compte Rendu de l’Académie des Sciences de Paris 110:93–95Google Scholar
  38. Valade P, Lord C, Grondin H, Bosc P, Taillebois L, Iida M, Tsukamoto K, Keith P (2009) Early life history and description of larval stages of an amphidromous goby, Sicyopterus lagocephalus (Pallas, 1767) (Teleostei: Gobiidae: Sicydiinae). Cybium 33(4):309–319Google Scholar
  39. Varsamos S, Nebel C, Charmantier G (2005) Ontogeny of osmoregulation in postembryonic fish: a review. Comp Biochem Physiol A: Mol Integr Physiol 141(4):401–429CrossRefGoogle Scholar
  40. Wu CS, Kam YC (2009) Effects of salinity on the survival, growth, development and metamorphosis of Fejervarya limnocharis tadpoles living in brackish water. Zool Sci 26(7):476–482CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA)Sorbonne Université, Muséum national d’Histoire naturelle, Université de Caen Normandie, Université des Antilles, CNRS, IRDParis Cedex 05France
  2. 2.Hydrô Réunion, Z.I. Les SablesEtang SaléFrance

Personalised recommendations