Strategies of phosphorus utilization in an astaxanthin-producing green alga Haematococcus pluvialis, a comparison with a bloom-forming cyanobacterium Microcystis wesenbergii

  • Dongbo Ding
  • Shasha Chen
  • Shuiping Peng
  • Changyu Jiang
  • Lingling Zheng
  • Jie LiEmail author


Haematococcus pluvialis is a unicellular green alga with great commercial value, due to its synthesis of powerful antioxidant astaxanthin. H. pluvialis was mainly distributed in small water bodies but was also observed in eutrophicated lakes, and even coexisted with Microcystis. However, Haematococcus cells never prevail in eutrophicated water bodies. Phosphorus is the main limiting factor in most aquatic ecosystems and may have a role in the distribution of H. pluvialis. Here, we focused on the physiological responses of H. pluvialis to various phosphorus conditions (0.002, 0.02, 0.2, and 2 mM), and compared with a bloom-forming cyanobacterium Microcystis wesenbergii. Growth determination suggested that high phosphorus conditions (0.2 mM and 2 mM) favor the growth of H. pluvialis cells, but H. pluvialis cells have a shorter duration of log phase than M. wesenbergii cells. Growth determination also indicated H. pluvialis cells had lower tolerability to low phosphorus (0.002 mM). Qualitative comparisons from long-term and short-term phosphorus uptake experiments, polyphosphate accumulation and extracellular alkaline phosphatase expression analysis suggested two different phosphorus utilization strategies in the two species. H. pluvialis cells were characterized with the induction of extracellular alkaline phosphatase to survive phosphorus-deficient condition, while M. wesenbergii cells were characterized with quick uptake of phosphorus and accumulation more of polyphosphate in phosphorus-replete conditions. To our knowledge, this is the first study to demonstrate features of phosphorus uptake and utilization in H. pluvialis, which will increase our understanding in the distribution of H. pluvialis.


Alkaline phosphatase Biodiversity protection Haematococcus culture Phosphorus uptake Polyphosphate 



We thank Chenlin Hu in the University of Houston for useful suggestions on paper writing. We also thank Dr. Miquel Lurling and other anonymous referees for critical suggestions. This work was financially supported by the China Agriculture Research System (CARS-50), the National Natural Science Foundation of China (31000179) and Teachers Research Funding of Central South University (2014JSJJ035).


  1. Borowitzka MA, Huisman JM, Osborn A (1991) Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J Appl Phycol 3:295–304CrossRefGoogle Scholar
  2. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117CrossRefGoogle Scholar
  3. Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082CrossRefGoogle Scholar
  4. Brookes JD, Ganf GG (2001) Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. J Plankton Res 23:1399–1411CrossRefGoogle Scholar
  5. Bru S, Jimenez J, Canadell D, Arino J, Clotet J (2017) Improvement of biochemical methods of polyP quantification. Microb Cell 4:6–15CrossRefGoogle Scholar
  6. Cao X, Štrojsová A, Znachor P, Zapomělová E, Liu G, Vrba J, Zhou Y (2005) Detection of extracellular phosphatases in natural spring phytoplankton of a shallow eutrophic lake (Donghu, China). Eur J Phycol 40:251–258CrossRefGoogle Scholar
  7. Chen W, Peng L, Wan N, Song L (2009) Mechanism study on the frequent variations of cell-bound microcystins in cyanobacterial blooms in Lake Taihu: implications for water quality monitoring and assessments. Chemosphere 77:1585–1593CrossRefGoogle Scholar
  8. Chrisostomou A, Moustaka-Gouni M, Sgardelis S, Lanaras T (2009) Air-dispersed phytoplankton in a mediterranean river-reservoir system (Aliakmon-Polyphytos, Greece). J Plankton Res 31:877–884CrossRefGoogle Scholar
  9. Chu FF, Chu PN, Cai PJ, Li WW, Lam PKS, Zeng RJ (2013) Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol 134:341–346CrossRefGoogle Scholar
  10. Conley DJ et al (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015CrossRefGoogle Scholar
  11. Friebele ES, Correll DL, Faust MA (1978) Relationship between phytoplankton cell size and the rate of orthophosphate uptake: in situ observations of an estuarine population. Mar Biol 45:39–52CrossRefGoogle Scholar
  12. Genitsaris S, Stefanidou N, Katsiapi M, Vardaka E, Kormas KA, Sommer U, Moustaka-Gouni M (2016) Haematococcus: a successful air-dispersed colonist in ephemeral waters is rarely found in phytoplankton communities. Turk J Bot 40:427–438CrossRefGoogle Scholar
  13. Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216CrossRefGoogle Scholar
  14. Guerrini F, Cangini M, Boni L, Trost P, Pistocchi R (2000) Metabolic responses of the diatom Achnanthes brevipes (Bacillariophyceae) to nutrient limitation. J Phycol 36:882–890CrossRefGoogle Scholar
  15. Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4–20CrossRefGoogle Scholar
  16. Harker M, Tsavalos AJ, Young AJ (1996) Factors responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis. Bioresour Technol 55:207–214CrossRefGoogle Scholar
  17. He P, Duncan J, Barber J (2007) Astaxanthin accumulation in the green alga Haematococcus pluvialis: effects of cultivation parameters. J Integr Plant Biol 49:447–451CrossRefGoogle Scholar
  18. Imamoglu E, Dalay MC, Sukan FV (2009) Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. New Biotechnol 26:199–204CrossRefGoogle Scholar
  19. Jimenez J, Bru S, Ribeiro MPC, Clotet J (2017) Polyphosphate: popping up from oblivion. Curr Genet 63:15–18CrossRefGoogle Scholar
  20. Kakizono T, Kobayashi M, Nagai S (1992) Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:403–405CrossRefGoogle Scholar
  21. Konopka AE, Klemer AR, Walsby AE, Ibelings BW (1993) Effects of macronutrients upon buoyancy regulation by metalimnetic Oscillatoria agardhii in Deming Lake, Minnesota. J Plankton Res 15:1019–1034CrossRefGoogle Scholar
  22. Kulakova AN, Hobbs D, Smithen M, Pavlov E, Gilbert JA, Quinn JP, McGrath JW (2011) Direct quantification of inorganic polyphosphate in microbial cells using 4′-6-diamidino-2-phenylindole (DAPI). Environ Sci Technol 45:7799–7803CrossRefGoogle Scholar
  23. Le Jeune AH et al (2007) Planktonic microbial community responses to added copper. Aquat Toxicol 83:223–237CrossRefGoogle Scholar
  24. Lin SJ, Litaker RW, Sunda WG (2016) Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J Phycol 52:10–36CrossRefGoogle Scholar
  25. Lindemann C, Fiksen Ø, Andersen KH, Aksnes DL (2016) Scaling laws in phytoplankton nutrient uptake affinity. Front Mar Sci 3:26CrossRefGoogle Scholar
  26. Lürling M, Mello MME, van Oosterhout F, de Senerpont Domis L, Marinho MM (2018) Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Front Microbiol 9:1851Google Scholar
  27. Markou G, Angelidaki I, Georgakakis D (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96:631–645CrossRefGoogle Scholar
  28. Martin P, Dyhrman ST, Lomas MW, Poulton NJ, Van Mooy BAS (2014) Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus. Proc Natl Acad Sci USA 111:8089–8094CrossRefGoogle Scholar
  29. O’Neil J, Davis T, Burford M, Gobler C (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334CrossRefGoogle Scholar
  30. Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecol 65:995–1010CrossRefGoogle Scholar
  31. Pandey M, Tiwari D (2003) Characteristics of alkaline phosphatase in cyanobacterial strains and in an APase def mutant of Nostoc muscorum. World J Microbiol Biotechnol 19:279–284CrossRefGoogle Scholar
  32. Pettersson K (1980) Alkaline phosphatase activity and algal surplus phosphorus as phosphorus-deficiency indicators in Lake Erken. Arch Hydrobiol 89:54–87Google Scholar
  33. Powell N, Shilton A, Chisti Y, Pratt S (2009) Towards a luxury uptake process via microalgae—defining the polyphosphate dynamics. Water Res 43:4207–4213CrossRefGoogle Scholar
  34. Proctor VW (1957) Some controlling factors in the distribution of Haematococcus pluvialis. Ecology 38:457–462CrossRefGoogle Scholar
  35. Reynolds CS (2007) Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578:37–45CrossRefGoogle Scholar
  36. Romans KM, Carpenter EJ, Bergman B (1994) Buoyancy regulation in the colonial diazotrophic Cyanobacterium Trichodesmium tenue: ultrastructure and storage of carbohydrate, polyphosphate, and nitrogen. J Phycol 30:935–942CrossRefGoogle Scholar
  37. Scibilia L, Girolomoni L, Berteotti S, Alboresi A, Ballottari M (2015) Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Res 12:170–181CrossRefGoogle Scholar
  38. Senthilkumar R, Sivakumar K (2008) Studies on phytoplankton diversity in response to abiotic factors in Veeranam lake in the Cuddalore district of Tamil Nadu. J Environ Biol 29:747–752Google Scholar
  39. Shah MMR, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci 7:531Google Scholar
  40. Shen H, Song L (2007) Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia 592:475–486CrossRefGoogle Scholar
  41. Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207CrossRefGoogle Scholar
  42. Steffen MM et al (2017) Ecophysiological examination of the Lake Erie Microcystis bloom in 2014: linkages between biology and the water supply shutdown of Toledo, OH. Environ Sci Technol 51:6745–6755CrossRefGoogle Scholar
  43. Thompson PA, Oh HM, Rhee G (1994) Storage of phosphorus in nitrogen-fixing Anabaena flos-aquae (Cyanophyceae). J Phycol 30:267–273CrossRefGoogle Scholar
  44. Tocquin P, Fratamico A, Franck F (2012) Screening for a low-cost Haematococcus pluvialis medium reveals an unexpected impact of a low N/P ratio on vegetative growth. J Appl Phycol 24:365–373CrossRefGoogle Scholar
  45. Van Mooy BA et al (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69CrossRefGoogle Scholar
  46. Vandergucht DM, Sereda JM, Davies J-M, Hudson JJ (2013) A comparison of phosphorus deficiency indicators with steady state phosphate in lakes. Water Res 47:1816–1826CrossRefGoogle Scholar
  47. Werner TP, Amrhein N, Freimoser FM (2005) Novel method for the quantification of inorganic polyphosphate (iPoP) in Saccharomyces cerevisiae shows dependence of iPoP content on the growth phase. Arch Microbiol 184:129–136CrossRefGoogle Scholar
  48. Wu Z, Shi J, Li R (2009) Comparative studies on photosynthesis and phosphate metabolism of Cylindrospermopsis raciborskii with Microcystis aeruginosa and Aphanizomenon flos-aquae. Harmful Algae 8:910–915CrossRefGoogle Scholar
  49. Xu Y et al (2008) Non-microcystin producing Microcystis wesenbergii (Komarek) Komarek (Cyanobacteria) representing a main waterbloom-forming species in Chinese waters. Environ Pollut 156:162–167CrossRefGoogle Scholar
  50. Zhang W, Wang J, Wang J, Liu T (2014) Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresour Technol 158:329–335CrossRefGoogle Scholar
  51. Zhu S, Wang Y, Xu J, Shang C, Wang Z, Xu J, Yuan Z (2015) Luxury uptake of phosphorus changes the accumulation of starch and lipid in Chlorella sp. under nitrogen depletion. Bioresour Technol 198:165–171CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Hunan Key Laboratory of Animal Models for Human Diseases, School of Life SciencesCentral South UniversityChangshaChina
  2. 2.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina

Personalised recommendations