Advertisement

Aquatic Ecology

, Volume 53, Issue 4, pp 629–637 | Cite as

How far may life venture? Observations on the harpacticoid copepod Phyllognathopus viguieri under extreme stress conditions

  • Francesca CapezzutoEmail author
  • Diana Maria Paola Galassi
  • Francesco Ancona
  • Porzia Maiorano
  • Gianfranco D’Onghia
Article

Abstract

The authors report the first finding of living specimens of the harpacticoid copepod Phyllognathopus viguieri (Maupas, 1892) in the gut content of the teleost fish Merluccius merluccius (Linnaeus, 1758), and their extraordinary viability after the M. merluccius specimens had been stored at − 20 °C for more than 1 month and their stomachs been preserved in 70% ethanol for a further month. After their survival for such a long time in such harsh conditions, P. viguieri, after a few minutes of total immobilization, began to swim actively and fast, and after being reared in freshwater or seawater in Petri dishes under starvation, these animals reproduced, and the presence of nauplii, copepodids and adults which completed the whole life cycle in 3/5 days was observed in freshwater and seawater, respectively. The occurrence of P. viguieri in the stomach of a true marine demersal fish species enlarges the known habitat types the species may stably colonize. The potential for dormancy in fertilized adult females to escape adverse environmental conditions is hypothesized.

Keywords

Phyllognathopus viguieri Merluccius merluccius Mediterranean Sea 

Notes

Acknowledgements

This study benefited from data recorded during the MEDITS EU project.

Compliance with ethical standards

Conflict of interest

All the authors of the paper, Francesca Capezzuto, Diana Maria Paola Galassi, Francesco Ancona, Porzia Maiorano and Gianfranco D’Onghia declare that they have no conflict of interest.

Human and animal rights

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

References

  1. Austen MC, Widbom B (1991) Changes in and slow recovery of a meiobenthic nematode assemblage following a hypoxic period in the Gullmar Fjord basin, Sweden. Mar Biol 111:139–145CrossRefGoogle Scholar
  2. Bacevičius E, Kregždys Ž (2017) First record of the European hake (Merluccius merluccius (Linnaeus, 1758): Actinopterygii: Gadiformes: Merlucciidae) in the coastal zone of Lithuania (southeastern Baltic Sea: eastern Gotland basin). Zool Ecol 27(2):117–123CrossRefGoogle Scholar
  3. Barclay MH (1969) First records and a new species of Phyllognathopus (Copepoda; Harpacticoida) in New Zealand. N Z J Mar Freshw Res 3(2):296–303.  https://doi.org/10.1080/00288330.1969.9515298 CrossRefGoogle Scholar
  4. Baumgartner MF, Tarrant AM (2017) The physiology and ecology of diapause in marine copepods. Annu Rev Mar Sci 9:387–411CrossRefGoogle Scholar
  5. Božic B (1966) Description du mâle de Phyllognathopus camptoïdes Bozic et d’une forme récoltée à Gif; essays d’hybridation et remarques sur les Phyllognathopodiidae. (Copépodes Harpacticoïdes). Rev Ecol Biol du Sol 3(1):31–40Google Scholar
  6. Bozzano A, Sardà F, Rìos J (2005) Vertical distribution and feeding patterns of juvenile European hake, Merluccius merluccius in the NW Mediterranean. Fish Res 73:29–36CrossRefGoogle Scholar
  7. Brewer E (1964) The phenology of Diaptomus stagnalis (Copepods: Calanoida). The development and the hatching of the egg stage. Physiol Zool 37(1):1–20CrossRefGoogle Scholar
  8. Bruno MC, Cottarelli V (1999) Harpacticoids from groundwaters in the Philippines: Parastenocaris mangyans, new species, Epactophanes philippinus, new species, and redescription of Phyllognathopus bassoti (Copepoda). J Crustac Biol 19(3):510–529.  https://doi.org/10.2307/1549260 CrossRefGoogle Scholar
  9. Bruno MC, Loftus WF, Reid JW, Perry SA (2001) Diapause in copepods (Crustacea) from ephemeral habitats with different hydroperiods in Everglades National Park (Florida, U.S.A.). In: Lopes RM, Reid JW, Rocha CEF (eds) Copepoda: developments in ecology, biology and systematics. Developments in hydrobiology, vol 156. Springer, Dordrecht, pp 295–308CrossRefGoogle Scholar
  10. Caceres CE (1997) Dormancy in invertebrates. Invertebr Biol 116:371–383CrossRefGoogle Scholar
  11. Clegg JS, Trotman CNA (2002) Physiological and biochemical aspect of Artemia ecology. In: Abatzopoulos TJ, Beardmore JA, Clegg JS et al (eds) Artemia: basic and applied biology. Kluwer Academic Publishers, Dordrecht/London/Boston, pp 129–170CrossRefGoogle Scholar
  12. Dahms H-U (1995) Dormancy in the Copepoda—an overview. Hydrobiologia 306:199–211CrossRefGoogle Scholar
  13. Dahms H-U, Qian P-Y (2004) Life histories of the Harpacticoida (Copepoda, Crustacea): a comparison with meiofauna and macrofauna. J Nat Hist 38:1725–1734.  https://doi.org/10.1080/0022293031000156321 CrossRefGoogle Scholar
  14. Dahms H-U, Bergmans M, Schminke HK (1990) Distribution and adaptations of sea ice inhabiting Harpacticoida (Crustacea, Copepoda) of the Weddell Sea (Antarctica) P.S.Z.N.I. Mar Ecol 11(3):207–226CrossRefGoogle Scholar
  15. Danks HV (1987) Insect dormancy: an ecological perspective. Biological Survey of Canada (Terrestrial Arthropods), OttawaGoogle Scholar
  16. De Troch M, Roelofs M, Riedel B, Mateja G (2013) Structural and functional responses of harpacticoid copepods to anoxia in the Northern Adriatic: an experimental approach. Biogeosci Discuss 10:2479–2514CrossRefGoogle Scholar
  17. Edmands S (1999) Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53:1757–1768PubMedCrossRefGoogle Scholar
  18. Finney CM (1979) Salinity stress in harpacticoid copepods. Estuaries 2(2):132–135CrossRefGoogle Scholar
  19. Galassi DMP, Marmonier P, Dole-Olivier M-J, Rundle SD (2002) Microcrustacea. In: Rundle S, Robertson AI, Schmid-Araya JM (eds) Freshwater meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 135–175Google Scholar
  20. Galassi DMP, De Laurentiis P, Fiasca B (2011) Systematics of the Phyllognathopodidae (Copepoda, Harpacticoida): re-examination of Phyllognathopus viguieri (Maupas, 1892) and Parbatocamptus jochenmartensi Dumont and Maas, 1988, proposal of a new genus for Phyllognathopus bassoti Rouch, 1972, and description of a new species of Phyllognathopus. ZooKeys 104:1–65CrossRefGoogle Scholar
  21. Galassi DMP, Fiasca B, Di Lorenzo T, Montanari A, Porfirio S, Fattorini S (2017) Groundwater biodiversity in a chemoautotrophic cave ecosystem: how geochemistry regulates microcrustacean community structure. Aquat Ecol 51:75–90CrossRefGoogle Scholar
  22. Glatzel T, Königshoff D (2005) Cross-breeding experiments among different populations of the ‘cosmopolitan’ species Phyllognathopus viguieri (Copepoda: Harpacticoida). Hydrobiologia 534:141–149CrossRefGoogle Scholar
  23. Hendelberg M, Jensen P (1993) Vertical distribution of the nematode fauna in a coastal sediment influenced by seasonal hypoxia in the bottom water. Ophelia 37(2):83–94CrossRefGoogle Scholar
  24. Hicks GR, Coull BC (1983) The ecology of marine meiobenthic harpacticoids copepods. Oceanogr Mar Biol Annu Rev 21:67–125Google Scholar
  25. Huys R, Gee JM, Moore CG, Hamond R (1996) Marine and brackish water harpacticoid copepods. Part 1. Synopses of the British Fauna (New Series), vol 51. Field Studies Council, ShrewsburyGoogle Scholar
  26. Joint L, Gee J, Warwick R (1982) Determination of fine-scale distribution of microbes and meiofauna in an intertidal sediment. Mar Biol 72:157–164CrossRefGoogle Scholar
  27. Kasahara S, Akiyama T (1976) Notes on dormancy in the adults of Tigriopus japonicus. J Fac Fish Anim Husb. Hiroshima Univ 15:57–65Google Scholar
  28. Khodami S, McArthur JV, Blanco-Bercial L, Martinez Arbizu P (2017) Molecular phylogeny and revision of copepod orders (Crustacea: Copepoda). Sci Rep 7(1):1–11.  https://doi.org/10.1038/s41598-017-06656-4 CrossRefGoogle Scholar
  29. Königshoff D, Glatzel T (2008) Mating behaviour of the ‘cosmopolitan’ species Phyllognathopus viguieri (Copepoda: Harpacticoida) and its systematical significance. J Zool Syst Evol Res 46(4):297–309CrossRefGoogle Scholar
  30. Korta M, García D, Santurtún M, Goikoetxea N, Andonegi E, Murua H, Álvarez P, Cerviño S, Castro J, Murillas A (2015) European hake (Merluccius merluccius) in the Northeast Atlantic Ocean. In: Arancibia H (ed) Hakes: biology and exploitation. Wiley Blackwell, Chichester, pp 1–37Google Scholar
  31. Lehman PS, Reid JW (1993) Phyllognathopus viguieri (Crustacea: Harpacticoida), a predaceous copepod of phytoparasitic, entomopathogenic, and free-living nematodes. Soil Crop Sci Soc Florida Proc 52:78–82Google Scholar
  32. Loftus WF, Reid JW (2000) Copepod (Crustacea) emergence from soils from Everglades marshes with different hydroperiods. J Fresh Ecol 15:515–523CrossRefGoogle Scholar
  33. Lonsdale DJ, Weissman P, Dobbs FC (1993) A reproductive-resting stage in an harpacticoid copepod, and the significance of genetically based differences among populations. Bull Mar Sci 53(1):180–193Google Scholar
  34. Mahe K, Amara R, Bryckaert T, Kacher M, Brylinski JM (2007) Ontogenetic and spatial variation in the diet of hake (Merluccius merluccius) in the Bay of Biscay and the Celtic Sea. ICES J Mar Sci 64:1210–1219CrossRefGoogle Scholar
  35. Modig H, Olafsson E (1998) Responses of Baltic benthic invertebrates to hypoxic events. J Exp Mar Biol Ecol 229:133–148CrossRefGoogle Scholar
  36. Moodley L, van der Zwaan GJ, Herman PMJ, Kempers L, van Breugel P (1997) Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina). Mar Ecol Prog Ser 158:151–163CrossRefGoogle Scholar
  37. Morote EMP, Olivar A, Bozzano F, Villate F, Uriarte I (2011) Feeding selectivity in larvae of the European hake (Merluccius merluccius L.) in relation to ontogeny and visual capabilities. Mar Biol 158:1349–1361CrossRefGoogle Scholar
  38. Murrell MC, Fleeger JW (1989) Meiofauna abundance on the Gulf of Mexico continental shelf affected by hypoxia. Cont Shelf Res 9:1049–1062CrossRefGoogle Scholar
  39. Persohn C, Lorance P, Trenkel V (2009) Habitat preferences of selected demersal fish species in the Bay of Biscay and Celtic Sea, North-East Atlantic Fisheries. Oceanography 18:268–285Google Scholar
  40. Pinckney J, Sandulli R (1990) Spatial autocorrelation analysis of meiofaunal and microalgal populations on an intertidal sandflat: scale linkage between consumers and resources. Estuar Coast Shelf Sci 30:341–353CrossRefGoogle Scholar
  41. Radzikowski J (2013) Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J Plankton Res 35(4):707–723CrossRefGoogle Scholar
  42. Reid JW (2001) A human challenge: discovering and understanding continental copepod habitats. Hydrobiologia 453(454):201–226CrossRefGoogle Scholar
  43. Ricci C (2001) Dormancy patterns in rotifers. Hydrobiologia 446(447):1–11CrossRefGoogle Scholar
  44. Slusarczyk M (1998) Diapauza jako strategia przetrwania. Wiad Ekolog 44:279–303Google Scholar
  45. Smyly WJP (1957) Observations on the life-history of the harpacticoid copepod, Canthocamptus staphylinus (Jurine). Ann Mag Nat Hist 10(115):509–512.  https://doi.org/10.1080/00222935708655991 CrossRefGoogle Scholar
  46. Thistle D (2003) Harpacticoid copepod emergence at shelf site in summer and winter: implications for hydrodynamics and mating hypothesis. Mar Ecol Prog Ser 248:177–185CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Bari Aldo Moro, LRU CoNISMaBariItaly
  2. 2.Department of Life, Health and Environmental SciencesUniversity of L’AquilaL’AquilaItaly

Personalised recommendations