Advertisement

Influence of abiotic factors on the composition and abundance of aquatic ferns occurring in the state of Paraíba, Brazil

  • Milena Nunes Bernardes GoetzEmail author
  • Ênio Wocyli Dantas
  • Iva Carneiro Leão Barros
Article

Abstract

Aquatic ecosystems are influenced by water quality and the surrounding environment, and changes to such ecosystems exert an effect on species. The aim of the present study was to relate the composition/abundance of species of aquatic ferns to both abiotic factors of water quality (total phosphorus and chlorophyll a) and the characteristics of the surrounding environment (rural, urban and vegetation). We analyzed 53 aquatic ecosystems in the state of Paraíba with lentic characteristics, considering total phosphorus and chlorophyll a as well as the classification of land use and occupation in the surrounding areas. We recorded nine species of aquatic ferns, which demonstrated a preference for environments with good water quality (low concentration of chlorophyll a) as well as sensitivity to rural and urban activities. The individual analysis of the species revealed that abiotic factors exerted an influence on the occurrence and abundance of the species. Cyclosorus interruptus (Willd.) H. Ito proved to be resistant to impacted environments, whereas Marsilea sp. and Ceratopteris thalictroides (L.) Brongn proved to be bioindicators of water quality. Our study revealed species considered bioindicators of good water quality and identified changes in the composition/abundance of the species in relation to different land uses.

Keywords

Limnology Aquatic macrophytes Pteridophyte Water quality Land use 

Notes

Acknowledgements

Authors are grateful to the Universidade Estadual da Paraíba (UEPB) for support in transportation and laboratory analysis. Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (770738).

Supplementary material

10452_2019_9708_MOESM1_ESM.pdf (50 kb)
Supplementary material 1 (PDF 50 kb)
10452_2019_9708_MOESM2_ESM.pdf (140 kb)
Supplementary material 2 (PDF 140 kb)

References

  1. AESA (2018) Agência Executiva de Gestão das Águas. Disponível em: <http://www.aesa.pb.gov.br/aesa-website/meteorologia-chuvas/> Acesso em: 24 Novembro 2017
  2. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728CrossRefGoogle Scholar
  3. APHA (1992) Standard methods for the examination of water and wastewater. American Public Health Association, WashingtonGoogle Scholar
  4. Araujo ES, Sabino JHF, Cotarelli VM, Filho JAS, Campelo MJA (2012) Riqueza e diversidade de macrófitas aquáticas em mananciais da Caatinga. Diálogos Ciência 32:229–234CrossRefGoogle Scholar
  5. Barbosa JEL, Andrade RS, Lins RP, Diniz CR (2006) Diagnóstico do estado trófico e aspectos limnológicos de sistemas aquáticos da Bacia Hidrográfica do Rio Taperoá, Trópico semi-árido Brasileiro. Revista de Biologia e Ciências da Terra 6(Suplemento Especial 1):81–89Google Scholar
  6. Barros SCA, Xavier SRS (2013) Samambaias em remanescente de Floresta Atlântica Nordestina (Parque Estadual Mata do Xém-Xém, Bayeux, Paraíba). Pesquisas, Botânica 64:207–224Google Scholar
  7. Bruni I, Gentili R, DeMattia F, Cortis P, Rossi G, Labra M (2013) A multi-level analysis to evaluate the extinction risk of and conservation strategy for the aquatic fern Marsilea quadrifolia L. in Europe. Aquat Bot 111:35–42CrossRefGoogle Scholar
  8. Calijuri ML, Castro JS, Costa LS, Assemany PP, Alves JEM (2015) Impact of land use/land cover changes on water quality and hydrological behavior of an agricultural subwatershed. Environ Earth Sci 74:5373–5382CrossRefGoogle Scholar
  9. Cervi AC, Bona C, Moço MCC, Linsingen L (2009) Macrófitas aquáticas do Município de General Carneiro, Paraná, Brasil. Biota Neotrop 9:215–222CrossRefGoogle Scholar
  10. Ceschin S, Zuccarello V, Caneva G (2010) Role of macrophyte communities as bioindicators of water quality: application on the Tiber River basin (Italy). Plant Biosyst 144:528–536CrossRefGoogle Scholar
  11. Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595:9–26CrossRefGoogle Scholar
  12. Chorus L, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Spon E & EM, LondonCrossRefGoogle Scholar
  13. Coelho FF, Lopes FS, Sperber CF (2005) Persistence strategy of Salvinia auriculata Aublet in temporary ponds of Southern Pantanal, Brazil. Aquat Bot 81:343–352CrossRefGoogle Scholar
  14. Cunha TB, Linhares FM, Santos JYG, Vianna PCG (2012) Mapeamento e tipologia dos conflitos pela gestão e controle das águas no estado da Paraíba. Boletim de Geografia 30(2):31–43CrossRefGoogle Scholar
  15. Cunha DGF, Calijuri MC, Lamparelli MC (2013) A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol Eng 60:126–134CrossRefGoogle Scholar
  16. Denny P (1985) The ecology and management of African Wetland vegetation. W. Junk, The HagueCrossRefGoogle Scholar
  17. Dong YH, Gituru RW, Chen JM, Wang QF (2005) Effect of habitat modification on the distribution of the endangered aquatic fern Ceratopteris thalictroides (Parkeriaceae) in China. J Freshw Ecol 20:689–693CrossRefGoogle Scholar
  18. Dong YH, Wang QF, Gituru RW (2012) Effect of habitat modification on the distribution of the endangered aquatic fern Ceratopteris pteridoides (Parkeriaceae) in China. Am Fern J 102:136–146CrossRefGoogle Scholar
  19. Esteves FA, Pereira FM (2011) Eutrofização Artificial. In: Esteves FA (ed) Fundamentos de limnologia. Editora Interciência Ltda, Rio de JaneiroGoogle Scholar
  20. Ferreira TF, Junior CRF, Marques DM (2008) Efeito da Liberação de Nutrientes por Plantas Aquáticas sobre a Dinâmica de Estados Alternativos da Comunidade Fitoplanctônica em um Lago Raso Subtropical. Revista Brasileira de Recursos Hídricos 13:151–160Google Scholar
  21. Ferreira FA, Mormul RP, Pedrali G, Pott VJ, Pott A (2010) Estrutura da comunidade de macrófitas aquáticas em três lagoas do Parque Estadual do Rio Doce, Minas Gerais, Brasil. Hoehnea 37:43–52CrossRefGoogle Scholar
  22. Ferreira FA, Mormul RP, Catian G, Pott A, Pedralli G (2015) Distribution pattern of neotropical aquatic macrophytes in permanent lakes at a Ramsar site. Braz J Bot 38:131–139CrossRefGoogle Scholar
  23. Flora do Brasil (2020) em construção Jardim Botânico do Rio de Janeiro Disponível em. http://floradobrasil.jbrj.gov.br. Acesso em 18 Janeiro 2018
  24. Folegatti MV, Sánchez-Román RM, Coelho RD, Frizzone JA (2010) Gestão dos Recursos Hídricos e Agricultura Irrigada no Brasil. In: Bicudo CEM, Tundisi JG, Scheuenstuhl MCB (eds) Águas do Brasil: Análises Estratégicas. Instituto de Botânica, São PauloGoogle Scholar
  25. Fuentes II, Espadas-Gil F, Talavera-May C, Fuentes G, Santamaría JM (2014) Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues and its effect on plant physiological processes. Aquat Toxicol 155:142–150CrossRefGoogle Scholar
  26. Gergel SE, Turner MG, Miller JR, Melack JM, Stanley EH (2002) Landscape indicators of human impacts to riverine systems. Aquat Sci 64:118–128CrossRefGoogle Scholar
  27. Gomes MP, Brito JCM, Carneiro MMLC, Cunha MRR, Garcia QS, Figueredo CC (2018) Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: impacts on biofertilization. Environ Pollut 232:293–299CrossRefGoogle Scholar
  28. Henry-Silva GG, Camargo AFM, Pezzato MM (2008) Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia 610:153–160CrossRefGoogle Scholar
  29. Irgang BE, Pedralli G, Waechter JL (1984) Macrófitas aquáticas da estação ecológica do Taim, Rio Grande do Sul, Brasil. Rossléria 6(1):395–405Google Scholar
  30. Johnson DM (1986) Systematics of the new world species of Marsilea (Marsileaceae). Syst Bot Monogr 11:1–87CrossRefGoogle Scholar
  31. Leterme P, Londoño AM, Muñoz JE, Súarez J, Bedoya CA, Souffrant WB, Buldgen A (2009) Nutritional value of aquatic ferns (Azolla filiculoides Lam. and Salvinia molesta Mitchell) in pigs. Anim Feed Sci Technol 149:135–148CrossRefGoogle Scholar
  32. Lourenço JDS, Xavier SRS (2013) Samambaias da Estação Ecológia do Pau-Brasil, Paraíba, Brasil. Pesquisas, Botânica 64:225–242Google Scholar
  33. Lumpkin TA, Plucknett DL (1980) Azolla: botany, physiology, and use as a green manure. Econ Bot 34(2):111–153CrossRefGoogle Scholar
  34. Lürling M, Geest G, Scheffer M (2006) Importance of nutrient competition and allelopathic effects in suppression of the green alga Scenedesmus obliquus by the macrophytes Chara, Elodea and Myriophyllum. Hydrobiologia 556:209–220CrossRefGoogle Scholar
  35. Mickel JT, Smith AR (2004) The pteridophytes of Mexico. Memoirs of the New york Botanical GardenGoogle Scholar
  36. Moran RC, Riba R (1995) Psilotaceae a Salviniaceae. In: Sousa M, Knapp S, Davidse G (eds) Flora Mesoamericana. Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  37. Moura MAM, Franco DAS, Matallo MB (2009) Manejo integrado de macrófitas aquáticas. Biológico 71:77–82Google Scholar
  38. Moura-Júnior EG, Lima LF, Silva SSL, Paiva RMS, Ferreira FA, Zickel CS, Pott A (2013) Aquatic macrophytes of Northeastern Brazil: checklist, richness, distribution and life forms. Check List 9:298–312CrossRefGoogle Scholar
  39. Pedralli G (2003) Macrófitas aquáticas como bioindicadoras da qualidade da água: alternativas para usos múltiplos de reservatórios. In: Thomaz SM, Bini LM (eds) Ecologia e Manejo de Macrófitas Aquáticas. Universidade Estadual de Maringá, MaringáGoogle Scholar
  40. Pereira SA, Trindade CRT, Albertoni EF, Palma-Silva C (2012) Aquatic macrophytes as indicators of water quality in subtropical shallow lakes, Southern Brazil. Acta Limnol Bras 24:52–63CrossRefGoogle Scholar
  41. Pereira AFN, Silva IAA, Santiago ACP, Barros ICL (2014) Efeito de borda sobre a comunidade de samambaias em fragmento de floresta atlântica (Bonito, Pernambuco, Brasil). Interciência 39:281–287Google Scholar
  42. Petrucio MM, Esteves FA (2000) Influence of photoperiod on the uptake of nitrogen and phosphorus in the water by Eichhornia crassipes and Salvinia auriculata. Rev Bras Biol 60(3):373–379CrossRefGoogle Scholar
  43. Pompêo M (2008) Monitoramento e manejo de macrófitas aquáticas. Oecologia brasiliensis 12:406–424Google Scholar
  44. Pott VJ, Pott A (2000) Plantas Aquáticas do Pantanal. Embrapa, BrasíliaGoogle Scholar
  45. PPG I (2016) A community-derived classification for extant lycophytes and ferns. J Syst Evol 54(6):563–603CrossRefGoogle Scholar
  46. Prado J, Sylvestre LS, Labiak PH, Windisch PG, Salino A, Barros ICL, Hirai RY, Almeida TE, Santiago ACP, Kieling-Rubio MA, Pereira AFN, Øllgaard B, Ramos CGV, Mickel JT, Dittrich VAO, Mynssen CM, Schwartsburd PB, Condack JPS, Pereira JBS, Matos FB (2015) Diversity of ferns and lycophytes in Brazil. Rodriguésia 66:1073–1083CrossRefGoogle Scholar
  47. Proctor GR (1985) Ferns of Jamaica. British Museum (Natural History), LondonGoogle Scholar
  48. Rajput KS, Kachhiyapatel RN, Patel SK, Raole VM (2016) Assessment of pteridophyte diversity and their status in Gujarat State, Western India. Plant Sci Today 3:337–348CrossRefGoogle Scholar
  49. R Development Core Team (2014) A language and environment for statistical computing R Foundation for statistical computing, Vienna Retrieved from http://www.R-projectorg/
  50. Rolon AS, Maltchik L (2004) Richness and distribution of aquatic pteridophytes in wetlands of the State of Rio Grande do Sul (Brazil). Acta Limnologica Brasilica 16:51–61Google Scholar
  51. Salino A, Semir J (2002) Thelypteridaceae (Polypodiophyta) do Estado de São Paulo: macrothelypteris e Thelypteris subgêneros Cyclosorus e Steiropteris. Lundiana 3:9–27Google Scholar
  52. Saluja R, Garg JK (2017) Macrophyte species composition and structure along littoral region in relation to limnological variables of a tropical wetland ecosystem. Chem Ecol 33:499–515CrossRefGoogle Scholar
  53. Santiago ACP, Sousa MA, Santana ES, Barros ICL (2014) Samambaias e licófitas da Mata do Buraquinho, Paraíba, Brasil. Biotemas 27:9–18CrossRefGoogle Scholar
  54. Santos VV, Barros ICL, Moura-Júnior AMM, Severi W, Magalhães KM (2014) Samambaias aquáticas da bacia do rio de Contas, Bahia, Brasil Neotropical. Biol Conserv 9:42–48Google Scholar
  55. Seabra VS, Damasceno J, Xavier RA, Dornellas PC (2014) Mapeamento do Uso e Cobertura do Solo da Bacia do Rio Taperoá: Região Semiárida do Estado da Paraíba. Revista Caminhos de Geografia 15(50):127–137Google Scholar
  56. Silva PCG, Moura MSB, Kiill LHP, Brito LTL, Pereira LA, Sá IB, Correia RC, Teixeira AHC, Cunha TJF, Filho CG (2010) Caracterização do Semiárido brasileiro: fatores naturais e humanos. In: Sá IB, Silva PCGS (eds) Semiárido. Pesquisa, Desenvolvimento e Inovação. Embrapa Semiárido. Petrolina, BrasileiroGoogle Scholar
  57. Silva JVH, Borges AKP, Morais PB, Picanço AP (2012) Compostagem das Macrófitas Aquáticas: Salvinia auriculata e Eichhornia crassipes retiradas do Reservatório da UHE Luis Eduardo Magalhães, Tocantins. Engenharia Ambiental 9(2):159–173Google Scholar
  58. Silvestre LC, Xavier SRS (2013) Samambaias em fragmento de Mata Atlântica, Sapé, Paraíba, Brasil. Boletim Museu Paraense Emílio Goeldi Ciências Naturais 8:431–447Google Scholar
  59. Soares DCF, Oliveira EF, Silva GDF, Duarte LP, Pott VJ, Vieira Filho SA (2008) Salvinia auriculata: aquatic bioindicator studied by instrumental neutron activation analysis (INAA). Appl Radiat Isot 66(5):561–564CrossRefGoogle Scholar
  60. Sousa BM (2016) Ocorrência e cobertura de Samambaias e suas relações com os fatores abióticos. 2016. Dissertação, Universidade Estadual da ParaíbaGoogle Scholar
  61. Thomaz SM, Esteves FA (2011) Comunidade de Macrófitas Aquáticas. In: Esteves FA (ed) Fundamentos de Limnologia. Editora Interciência Ltda, Rio de JaneiroGoogle Scholar
  62. Tundisi JG, Matsumura-Tundisi T (2008) Limnologia. Oficina de Textos, São PauloGoogle Scholar
  63. Vollenweider RA, Kerekes JJ (1981) Background and summary results of the OECD cooperative programme on eutrophication. In: Restoration of lakes and inland waters. Environmental Protection Agency, Washington, DCGoogle Scholar
  64. Xavier SRS, Barros ICL, Santiago ACP (2012) Ferns and lycophytes in Brazil’s semi-arid region. Rodriguésia 63:483–488CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Programa de Pós Graduação em Biologia VegetalUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Universidade Estadual da Paraíba - Campus V, Centro de Ciências Biológicas e Sociais AplicadasJoão PessoaBrazil

Personalised recommendations