Advertisement

Aquatic Ecology

, Volume 53, Issue 4, pp 509–528 | Cite as

The status and potential distribution of Hydrocotyle umbellata L. and Salvinia auriculata Aubl. under climate change scenarios

  • Selim Z. Heneidy
  • Marwa Waseem A. HalmyEmail author
  • Amal M. Fakhry
  • Asmaa M. El-Makawy
Article

Abstract

Aquatic ecosystems are susceptible to human-induced disturbance, including climate changes and biological invasions. The aim of this study was to assess the current and future potential distribution of two introduced aquatic species that have become invasive in some places where they were introduced. Hydrocotyle umbellata L. and Salvinia auriculata Aubl. are free-floating macrophytes native to North, Central, and South America. Both can quickly colonize aquatic environments because of their high growth rate and reproductive capacity similar to water hyacinth. Both species were introduced to Egypt for ornamental purposes. We have applied species distribution models using the Maxent approach and bioclimatic variables. Occurrence records from the entire range of the two species were obtained from the Global Biodiversity Information Facility and used for modelling their habitat suitability and assessing the potentiality of their spread in other new habitats. To project future changes in the two macrophytes’ distributions with respect to climate change, we used four representative concentration pathway scenarios (RCP 2.6, 4.5, 6.0 and 8.5) of the IPCC 5th assessment, based on different assumptions of greenhouse gas emissions for the future period of 2050s. The results showed that Maxent approach has successfully predicted the distribution of the two species with test AUC > 0.92. Bioclimatic variables that contributed the most to the prediction of the two species distribution included isothermality, temperature seasonality, mean temperature of the coldest quarter, and minimum temperature of the coldest month. Results showed that the range of S. auriculata is predicted to increase by 2050 under all climatic scenarios. A decline in the current climatically suitable habitats of H. umbellata is projected to occur in its native range, especially in South America, while it is predicted to gain more suitable habitats out of its native range in Europe and Africa. Both species are predicted to gain habitats outside their native range, while their ranges are expected to face a decline in their native region. The study can help in the identification of areas with high potential vulnerability to future invasions by the two studied aquatic macrophytes and thus can assist in prioritization of monitoring actions and management plans. This can reduce any ecological and socio-economic consequences due to invasion by these two aquatic plants.

Keywords

Introduced species Macrophytes Species distribution models Maxent 

Notes

Supplementary material

10452_2019_9705_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. Abotsi KE (2019) The Pteridophytes from Togo (West Africa). Version 1.2. Biodiversity Data Journal. Occurrence dataset http://sci-hub.tw/10.15468/jjecvf accessed via GBIF.org on 06 June 2019. https://www.gbif.org/occurrence/1849033582
  2. Afrous A, Goudarzi S, Liaghat A (2010) Phytoremediation by some species of aquatic plants for as and Hg removal. Azad Univ Dezful Iran J Adv Environ Biol 5(11):3629–3635Google Scholar
  3. Agami M, Reddy KR (1991) Interrelationships between Eichhornia crassipes (Mart) Solms and Hydrocotyle umbellata L. Aquat Bot 39:147–157CrossRefGoogle Scholar
  4. Alahuhta J, Heino J, Luoto M (2011) Climate change and the future distributions of aquatic macrophytes across boreal catchments. J Biogeogr 38:383–393CrossRefGoogle Scholar
  5. Alloche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  6. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118CrossRefGoogle Scholar
  7. Baek HJ, Lee J, Lee HS, Hyun YK, Cho C, Kwon WT, Marzin C, Gan S-Y, Kim M-J, Choi D-H, Lee J, Lee J, Boo K-O, Kang H-S, Byun YH (2013) Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia Pac J Atmos Sci 49(5):603–618CrossRefGoogle Scholar
  8. Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F (2013) Will climate change promote future invasions? Glob Change Biol 19:3740–3748CrossRefGoogle Scholar
  9. Bellard C, Leroy B, Thuiller W, Rysman J-F, Courchamp F (2016) Major drivers of invasion risks throughout the world. Ecosphere 7:1–14CrossRefGoogle Scholar
  10. Bhambie S, Bhardwaj KR (1979) Studies in pteridophytes XVIII use of Salvinia auriculata aublet: an obnoxious weed-in paper industry. Hydrobiologia 65(3):209–211CrossRefGoogle Scholar
  11. Bianchini I, da Cunha-Santino MB (2014) Dynamics of colonization and the collapse of a macrophyte community during the formation of a tropical reservoir. Fundam Appl Limnol 184:141–150CrossRefGoogle Scholar
  12. Bianchini I, da Cunha-Santino MB (2016) CH4 and CO2 from decomposition of Salvinia auriculata aublet, a macrophyte with high invasive potential. Wetlands 36:557–564CrossRefGoogle Scholar
  13. Bini LM, Thomaz SM, Murphy KJ, Camargo AFM (1999) Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir, Brazil. Hydrobiologia 415:147–154CrossRefGoogle Scholar
  14. Boschilia SM, Thomaz SM, Piana PA (2006) Plasticidade morfológica de Salvinia herzogii de La Sota em resposta à densidade populacional. Acta Scientiarum Biological Sciences 28:35–39Google Scholar
  15. Bowmer KH, Jacobs SWL, Sainty GR (1995) Identification, biology and management of Elodea canadensis, Hydrocharitaceae. J Aquat Plant Manag 33:13–19Google Scholar
  16. Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589PubMedPubMedCentralCrossRefGoogle Scholar
  17. Caesar J, Palin E, Liddicoat S, Lowe J, Burke E, Pardaens A, Sanderson M, Kahana R (2013) Response of the HadGEM2 earth system model to future greenhouse gas emissions pathways to the year 2300. J Clim 26:3275–3284CrossRefGoogle Scholar
  18. Camargo AFM, Esteves FA (1995) Influence of water level variation on fertilization oxbow lake of Rio Mogi-Guaçu, State of São Paulo, Brazil. Hydrobiologia 299:185–193CrossRefGoogle Scholar
  19. Carey MP, Sethi SA, Larsen SJ, Rich CF (2016) A primer on potential impacts, management priorities, and future directions for Elodea spp. in high latitude systems: learning from the Alaskan experience. Hydrobiologia 777:1–19CrossRefGoogle Scholar
  20. Cavenaghi AL, Velini ED, Negrisoli E, Carvalho FT, Galo MLBT, Trindade MLB, Corrêa MR, Santo SCA (2005) Monitoring problems with aquatic plants and characterization of water and sediment quality at UHE Mogi-Guaçu. Planta Daninha 23(2):225–231CrossRefGoogle Scholar
  21. Chavasiri W, Prukchareon W, Sawasdee P, Zungsontiporn S (2005) Allelochemicals from Hydrocotyle umbellata Linn. In: Proceedings of the 4th World Congress on Allellopathy, vol 4, pp 15–18Google Scholar
  22. Chen RS, Huang, CC, Li JC, Tsay, JG (2008) First report of Simplicillium lanosoniveum causing brown spot on Salvinia auriculata and S. molesta in Taiwan. Plant Dis 92(11):1589–1589PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cilliers CJ (1999) Biological control of parrot’s feather, Myriophyllum aquaticum (Vell) Verdc (Haloragaceae), in South Africa. In: Olckers T, Hill MP (eds) Biological control of weeds in South Africa (1990–1998). Entomological Society of Southern Africa, Hatfield, South Africa. African Entomology Memoir, vol 1. pp 113–118Google Scholar
  24. Cilliers CJ, Hill MP, Ogwang JA, Ajuonu O (2003) Aquatic weeds in Africa and their control. In: Neuenschwander P, Borgemeister C, Langewald J (eds) Biological control in IPM systems in Africa. CAB International, Wallingford, pp 161–178Google Scholar
  25. Coelho FF, Lopes FS, Sperber CF (2000) Density-dependent morphological plasticity in Salvinia auriculata aublet. Aquat Bot 66(4):273–280CrossRefGoogle Scholar
  26. Cordo HA, DeLoach CJ, Ferrer R (1982) The weevils Lixellus, Tanysphiroideus and Cyrtobagous that feed on Hydrocotyle and Salvinia in Argentina. Coleopterist’s Bull 36:279–286Google Scholar
  27. COSEWIC (2014) COSEWIC assessment and status report on water pennywort Hydrocotyle umbellata in Canada Committee on the Status of Endangered Wildlife in Canada, OttawaGoogle Scholar
  28. Creuwels J (2019) Naturalis Biodiversity Center (NL)—Botany. Naturalis Biodiversity Center. Occurrence dataset http://sci-hub.tw/10.15468/ib5ypt accessed via GBIF.org on 06 June 2019. https://www.gbif.org/occurrence/1138058116
  29. Crow GE, Rivera DI, Charpentier C (1987) Aquatic vascular plants of two Costa Rican ponds. Selbyana 10(1):31–35Google Scholar
  30. Cueto M, Fuentes-Carretero CJM (2015) About Marsilea strigosa Willd. and Salvinia natans (L.) All. in Andalusia (Spain). (Sobre Marsilea strigosa Willd. y Salvinia natans (L.) All. en Andalucía (España)). Acta Bot Malacit 40:271–276CrossRefGoogle Scholar
  31. Dierberg FE, Debus TA, Goulet NA (1987) Removal of copper and lead using a thin-film technique. In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia Publishing, New York, pp 497–504Google Scholar
  32. Drenovsky RE, Grewell BJ, D’antonio CM, Funk JL, James JJ, Molinari N, Parker IM, Richards CL (2012) A functional trait perspective on plant invasion. Ann Bot 110:141–153PubMedPubMedCentralCrossRefGoogle Scholar
  33. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  34. Escalante T, Rodríguez-Tapia G, Linaje M, Illoldi-Rangel P, González-López R (2013) Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals. TIP 16:5–17CrossRefGoogle Scholar
  35. Fernández OA, Sutton DL, Lallana VH, Sabbatini MR, Irigoyen FH (1990) Aquatic weeds problems and management in South and Central America. In: Pieterse AH, Murphy KJ (eds) Aquatic weeds The ecology and management of nuisance aquatic vegetation. Oxford University Press, New York, pp 406–425Google Scholar
  36. Gallardo B, Aldridge DC (2013) The ‘dirty dozen’: socio-economic factors amplify the invasion potential of 12 high-risk aquatic invasive species in Great Britain and Ireland. J Appl Ecol 50:757–766CrossRefGoogle Scholar
  37. GBIFORG (2018a) GBIF occurrence download, 12 Feb 2018. http://sci-hub.tw/10.15468/dlzlaucq
  38. GBIFORG (2018b) GBIF occurrence download, 12 Feb 2018. http://sci-hub.tw/10.15468/dlydix2l
  39. Gillard M, Thiébaut G, Deleu C, Leroy B (2017) Present and future distribution of three aquatic plants taxa across the world: decrease in native and increase in invasive ranges. Biol Invasions 19(7):2159–2170CrossRefGoogle Scholar
  40. Gopal B (1990) Nutrient dynamics of aquatic plant communities. In: Gopal B (ed) Ecology and management of aquatic vegetation in the Indian subcontinent. Springer, Dordrecht, pp 177–197CrossRefGoogle Scholar
  41. Grewell BJ, Thomason MJS, Futrell CJ, Iannucci M, Drenovsky RE (2016) Trait responses of invasive aquatic macrophyte congeners: colonizing diploid outperforms polyploidy. AoB PLANTS 8:plw014PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hadiuzzaman S, Khondker M (1993) Salvinia auriculata Aublet-a new record of aquatic Pteridophyte from Bangladesh. Bangladesh J Bot 22(2):229–231Google Scholar
  43. Hahn MA, Van Kluenen M, Müller-Schärer H (2012) Increased phenotypic plasticity to climate may have boosted the invasion success of polyploid Centaurea stoebe. PLoS ONE 7:e50284PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hamdy SA, Hefnawy HM, Azzam SM, Aboutabl EA (2018) Botanical and genetic characterization of Hydrocotyle umbellata L. cultivated in Egypt. Bull Fac Pharm Cairo Univ 56(1):46–53CrossRefGoogle Scholar
  45. Heikkinen R, Leikola N, Fronzek S, Lampinen R, Toivonen H (2009) Predicting distribution patterns and recent northward range shift of an invasive aquatic plant: Elodea canadensis in Europe. BioRisk 2:1–32CrossRefGoogle Scholar
  46. Heneidy SZ, Marzouk RI (2010) Plant Atlas: the botanic garden (ALEX). Monchaat Al-Maaref, AlexandriaGoogle Scholar
  47. Henery ML, Bowman G, Mráz P, Treier UA, Gex-Fabry E, Schaffner U, Müller-Schärer H (2010) Evidence for a combination of preadapted traits and rapid adaptive change in the invasive plant Centaurea stoebe. J Ecol 98:800–813CrossRefGoogle Scholar
  48. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  49. Hoveka LN, Bezeng BS, Yessoufou K, Boatwright JS, Van der Bank M (2006) Effects of climate change on the future distributions of the top five freshwater invasive plants in South Africa South African. J Bot 102:33–38Google Scholar
  50. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18CrossRefGoogle Scholar
  51. Hume NP, Fleming MS, Horne AJ (2002) Plant carbohydrate limitation on nitrate reduction in wetland microcosms. Water Res 36:577–584PubMedCrossRefGoogle Scholar
  52. Hussner A (2012) Alien aquatic plant species in European countries. Weed Res 52:297–306CrossRefGoogle Scholar
  53. Hussner A, Champion PD (2012) Myriophyllum aquaticum (Vell) Verdcourt (parrot feather). In: Francis RA (ed) A Handbook of global freshwater invasive species. Routledge, New York, pp 103–111Google Scholar
  54. Hussner A, Stiers I, Verhofstad MJJM, Bakker ES, Grutters BMC, Haury J, van Valkenburg JLCH, Brundu G, Newman J, Clayton JS, Anderson LWJ, Hofstra D (2017) Management and control methods of invasive alien freshwater aquatic plants: a review. Aquat Bot 136:112–137CrossRefGoogle Scholar
  55. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, CambridgeGoogle Scholar
  56. Jacono CC, Davern TR, Center TD (2001) The adventive status of Salvinia minima and S molesta in the Southern United States and the related distribution of the weevil Cyrtobagous salviniae. Castanea 66:214–226Google Scholar
  57. Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo K-O, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570CrossRefGoogle Scholar
  58. Julien MH, Center TD Tipping, PW (2002) Floating fern (Salvinia). In: Driesche RV, Blossey B, Hoddle M, Lyon S, Reardon R (eds) Reardon Biological control of invasive plants in the eastern United States. USDA Forest Service Publication, USA, pp 17–32Google Scholar
  59. Kelly R, Leach K, Cameron A, Christine AM, Reid N (2014) Combining global climate and regional landscape models to improve prediction of invasion risk. Divers Distrib 20:884–894CrossRefGoogle Scholar
  60. Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM, Cheyne SM, Hearn AJ et al (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379CrossRefGoogle Scholar
  61. Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296(1–4):1–22CrossRefGoogle Scholar
  62. Leroy B, Paschetta M, Canard A, Bakkenes M, Isaia M, Ysnel F (2013) First assessment of effects of global change on threatened spiders: potential impacts on Dolomedes plantarius (Clerck) and its conservation plans. Biol Conserv 161:155–163CrossRefGoogle Scholar
  63. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  64. Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805Google Scholar
  65. Magill B, Solomon J, Stimmel H (2016) Tropicos specimen data. Missouri Botanical Garden. Occurrence dataset http://sci-hub.tw/10.15468/hja69f accessed via GBIF.org on 06 June 2019. https://www.gbif.org/occurrence/1260595246
  66. Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman C, Raskin E, Mitchell-Olds T (2012) Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytol 193(3):797–805PubMedCrossRefPubMedCentralGoogle Scholar
  67. Martin GM, Levine RC (2012) The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family. Earth Syst Dyn 3:245–261CrossRefGoogle Scholar
  68. Medeiros JCC, Coelho FF, Teixeira E (2016) Biomass allocation and nutrients balance related to the concentration of nitrogen and phosphorus in Salvinia auriculata (Salviniaceae). Braz J Biol 76(2):461–468PubMedCrossRefPubMedCentralGoogle Scholar
  69. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241CrossRefGoogle Scholar
  70. Mitas CM, Clement A (2006) Recent behavior of the Hadley cell and tropical thermodynamics in climate models and re-analyses. Geophys Res Lett 33:L01810CrossRefGoogle Scholar
  71. Mitchell DS, Tur NM (1975) The rate of growth of Salvinia molesta (S. auriculata Auct) in laboratory and natural conditions. J Appl Ecol 12:213–225CrossRefGoogle Scholar
  72. New Zealand Plant Conservation Network (2013) Flora: Hydrocotyle umbellata http://www.nzpcnorgnz/flora_detailsaspx?ID=4202. Accessed 22 Feb 2018
  73. Okada M, Grewell BJ, Jasieniuk M (2009) Clonal spread of invasive Ludwigia hexapetala and L. grandiflora in freshwater wetlands of California. Aquat Bot 91(3):123–129CrossRefGoogle Scholar
  74. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful. Glob Ecol Biogeogr 12(5):361–371CrossRefGoogle Scholar
  75. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259CrossRefGoogle Scholar
  76. Pinsupa J, Zungsontiporn S (2007) Hydrocotyle umbrellata L: A new invasive aquatic plant in Thailand. In: Marambe B, Sangakkara UR, De Costa WAJM, Abeysekara ASK (eds) Proceedings of the 21st Asian Pacific Weed Science Society conference, 2–6 Oct 2007, Colombo, Sri Lanka, pp 367–372Google Scholar
  77. Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22(3):521–533PubMedCrossRefPubMedCentralGoogle Scholar
  78. Raizer J, Amaral MEC (2001) Does the structural complexity of aquatic macrophytes explain the diversity of associated spider assemblages? J Arachnol 29(2):227–237CrossRefGoogle Scholar
  79. Riefner R, Smith A (2009) Salvinia minima and S. oblongifolia (Salviniaoeae) new to California, with notes on the S. auriculata complex. J Bot Res Inst Tex 3(2):855–866Google Scholar
  80. Schwoerer T, Morton J (2018) Human dimension of aquatic invasive species in Alaska: lessons learned while integrating economics, management, and biology to incentivize early detection and rapid response. In: Lewis T (ed) Alaska economic, environmental, and social issues. Nova Science Publishers Inc, Hauppauge, pp 1–46Google Scholar
  81. Simpson DA (1984) A short history of the introduction and spread of Elodea Michx in the British Isles. Watsonia 15:1–9Google Scholar
  82. Sooknah RD, Wilkie AC (2004) Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Eng 22:27–42CrossRefGoogle Scholar
  83. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293PubMedPubMedCentralCrossRefGoogle Scholar
  84. The HadGEM2 Development Team: Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A (2011) The HadGEM2 family of Met Office Unified Model climate configurations. Geosci Model Dev 4:765–841CrossRefGoogle Scholar
  85. Thomas R, Kane A, Bierwagen BG (2008) Effects of climate change on aquatic invasive species and implications for management and research. US Environmental Protection Agency, Washington, DC, EPA/600/R-08/014Google Scholar
  86. Thomaz SM, Bini LM, Souza MC, Kita KK, Camargo AFM (1999) Aquatic macrophytes of Itaipu Reservoir, Brazil: survey of species and ecological considerations. Braz Arch Biol Technol 42:15–22CrossRefGoogle Scholar
  87. Thouvenot L, Haury J, Thiebaut G (2013) A success story: water primroses, aquatic plant pests. Aquat Conserv Mar Freshw Ecosyst 23:790–803Google Scholar
  88. Toft JD, Simenstad CA, Cordell JR, Grimaldo LF (2003) The effects of introduced water hyacinth on habitat structure, invertebrate assemblages, and fish diets. Estuaries 26(3):746–758CrossRefGoogle Scholar
  89. Turbelin AJ, Malamud BD, Francis RA (2017) Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob Ecol Biogeogr 26(1):78–92CrossRefGoogle Scholar
  90. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  91. Viana DS (2017) Can aquatic plants keep pace with climate change? Front Plant Sci 8:1906PubMedPubMedCentralCrossRefGoogle Scholar
  92. Vila M, Basnou C, Pysek P (2009) How well do we understood the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ 8:135–144CrossRefGoogle Scholar
  93. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar
  94. Yongpisanphop J, Kruatrachue M, Pokethitlyook P (2005) Toxicity and accumulation of lead and chromium in Hydrocotyle umbellata. J Environ Biol 26:79–89PubMedGoogle Scholar
  95. Ziska LH, George K, Frenz DA (2007) Establishment and persistence of common ragweed (Amb artemisiifolia L.) in disturbed soil as a function of an urban n-rural macro-environment. Glob Change Biol 13(1):266–274CrossRefGoogle Scholar
  96. Zungsontiporn S (2006) Global invasive plants in Thailand and its status and a case study of Hydrocotyle umbellata L. In: Proceedings of international workshop on the development of database (APASD) for biological invasion, Taichung, Taiwan ROC, Sept 18–22Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Botany and Microbiology, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.Department of Environmental Sciences, Faculty of ScienceAlexandria UniversityAlexandriaEgypt

Personalised recommendations