Aquatic Ecology

, Volume 53, Issue 1, pp 61–77 | Cite as

The influence of El Niño-induced drought on cyanobacterial community structure in a shallow tropical reservoir (Koka Reservoir, Ethiopia)

  • Samson TilahunEmail author
  • Demeke Kifle


Koka Reservoir in Ethiopia has been severely impacted by water quality deterioration associated with harmful algal blooms. As a large proportion of the annual nutrient budget of the reservoir is believed to be of riverine origin, nutrient availability is presumably largely influenced by rainfall pattern and hydrological cycles, which are related to changes in climatic conditions such as El Niño-induced drought. The effect of El Niño-induced drought, which occurred in 2015, on the cyanobacterial community structure of Koka Reservoir was, therefore, investigated from May 28, 2015 to April 28 2016. The drought caused the failure of the main rainy season, which expectedly caused reduction in the external input of nutrients and changes in other limnological conditions of the reservoir. These changes, particularly nitrogen limitation, triggered the unusual dominance of the diazotrophic cyanobacterial genus Cylindrospermopsis over the previously persistently dominant nondiazotrophic genus, Microcystis, in the reservoir.


Climate change Cylindrospermopsis Diazotrophic Microcystis Nutrient limitation 



Financial support for the corresponding author was provided by USAID and Addis Ababa University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10452_2019_9673_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1477 kb)


  1. Abebe M (2001) Sedimentation in the Koka Reservoir, Ethiopia. In: Hydropower in the New Millennium: Proceedings of the 4th International Conference Hydropower, Bergen, Norway, 20–22 June 2001. CRC Press, p 345Google Scholar
  2. APHA (1999) Standard methods for the examination of water and wastewater, vol 2. American Public Health Association, WashingtonGoogle Scholar
  3. Backer LC (2002) Cyanobacterial harmful algal blooms (CyanoHABs): developing a public health response. Lake Reserv Manag 18(1):20–31Google Scholar
  4. Baker TJ, Miller SN (2013) Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J Hydrol 486:100–111Google Scholar
  5. Barber RT, Sanderson MP, Lindley ST, Chai F, Newton J, Trees CC, Foley DG, Chavez FP (1996) Primary productivity and its regulation in the equatorial Pacific during and following the 1991–1992 El Nino. Deep Sea Res Part II 43(4–6):933–969Google Scholar
  6. Blanchot J, Rodier M (1996) Picophytoplankton abundance and biomass in the western tropical Pacific Ocean during the 1992 El Niño year: results from flow cytometry. Deep Sea Res Part I 43(6):877–895Google Scholar
  7. Blomqvist P, Pettersson A, Hyenstrand P (1994) Ammonium-nitrogen—a key regulatory factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems. Arch Hydrobiol 132(2):141–164Google Scholar
  8. Bonilla S, Aubriot L, Soares MCS, González-Piana M, Fabre A, Huszar VL, Lürling M, Antoniades D, Padisák J, Kruk C (2012) What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiol Ecol 79(3):594–607Google Scholar
  9. Bouvy M, Falcão D, Marinho M, Pagano M, Moura A (2000) Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquat Microb Ecol 23(1):13–27Google Scholar
  10. Bouvy M, Nascimento SM, Molica RJ, Ferreira A, Huszar V, Azevedo SM (2003) Limnological features in Tapacurá reservoir (northeast Brazil) during a severe drought. Hydrobiologia 493(1):115–130Google Scholar
  11. Briand J, Robillot C, Quiblier-Lloberas C, Humbert J, Couté A, Bernard C (2002) Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Res 36(13):3183–3192Google Scholar
  12. Câmara F, Rocha O, Pessoa E, Chellappa S, Chellappa N (2015) Morphofunctional changes of phytoplankton community during pluvial anomaly in a tropical reservoir. Braz J Biol 75(3):628–637Google Scholar
  13. Carmichael W, Evans W, Yin Q, Bell P, Moczydlowski E (1997) Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov. Appl Environ Microbiol 63(8):3104–3110Google Scholar
  14. Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Karl E, Karl E, Lancelot C, Gene E, Gene E (2009) Controlling eutrophication: nitrogen and phosphorus. Science 123:1014–1015Google Scholar
  15. Cronberg G, Komárek J (2004) Some nostocalean cyanoprokaryotes from lentic habitats of Eastern and Southern Africa. Nova Hedwigia 78(1–2):71–106Google Scholar
  16. Crossetti LO, Bicudo CEDM (2008) Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): the assemblage index application. Hydrobiologia 610(1):161–173Google Scholar
  17. Dokulil MT, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438(1):1–12Google Scholar
  18. Donald DB, Bogard MJ, Finlay K, Bunting L, Leavitt PR (2013) Phytoplankton-specific response to enrichment of phosphorus-rich surface waters with ammonium, nitrate, and urea. PLoS ONE 8(1):e53277Google Scholar
  19. Fabbro LD, Duivenvoorden LJ (2000) A two-part model linking multidimensional environmental gradients and seasonal succession of phytoplankton assemblages. Hydrobiologia 438(1):13–24Google Scholar
  20. Falconer IR, Humpage AR (2005) Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. Int J Environ Res Public Health 2(1):43–50Google Scholar
  21. Figueredo CC, Giani A (2009) Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii. Limnol Ecol Manag Inland Waters 39(4):264–272Google Scholar
  22. Fristachi A, Sinclair JL, Hall S, Berkman JAH, Boyer G, Burkholder J, Burns J, Carmichael W, DuFour A, Frazier W (2008) Occurrence of cyanobacterial harmful algal blooms workgroup report. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, pp 45–103Google Scholar
  23. Gleixner S, Keenlyside N, Viste E, Korecha D (2016) The El Niño effect on Ethiopian summer rainfall. Clim Dyn 49:1865–1883Google Scholar
  24. Gleixner S, Keenlyside N, Viste E, Korecha D (2017) The El Niño effect on Ethiopian summer rainfall. Clim Dyn 49(5–6):1865–1883Google Scholar
  25. Halcrow W, Pattern T (1989) Master plan for the development of surface water resources in the Awash basin. Final Unpublished Report Ethiopian Valleys Development Studies Authority 4Google Scholar
  26. Harris GP, Baxter G (1996) Interannual variability in phytoplankton biomass and species composition in a subtropical reservoir. Freshw Biol 35(3):545–560Google Scholar
  27. Hötzel G, Croome R (1999) A phytoplankton methods manual for Australian freshwatersGoogle Scholar
  28. Howarth RW, Marino R, Lane J, Cole JJ (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems 1 Rates and importance. Limnol Oceanogr 33(4part2):669–687Google Scholar
  29. Ibelings BW, Chorus I (2007) Accumulation of cyanobacterial toxins in freshwater “seafood” and its consequences for public health: a review. Environ Pollut 150(1):177–192Google Scholar
  30. Jacox MG, Hazen EL, Zaba KD, Rudnick DL, Edwards CA, Moore AM, Bograd SJ (2016) Impacts of the 2015–2016 El Niño on the California Current System: early assessment and comparison to past events. Geophys Res Lett 43(13):7072–7080Google Scholar
  31. Kebede E, Willén E (1996) Phytoplankton in a salinity-alkalinity series of lakes in the Ethiopian Rift Valley. Acta Universitatis UpsaliensisGoogle Scholar
  32. Kebede E, Willén E (1998) Phytoplankton in a salinity-alkalinity series of lakes in the Ethiopian Rift Valley. Hydrobiol Suppl Vol 89:63–96Google Scholar
  33. Kenkel N (2006) On selecting an appropriate multivariate analysis. Can J Plant Sci 86(3):663–676Google Scholar
  34. Komárek J, Anagnostidis K (2005) Cyanoprokaryota. 2. Oscillatoriales. Süsswasserflora von Mitteleuropa. Bd. 19 (2). München: 759 SGoogle Scholar
  35. Komárek J, Kling H (1991) Variation in six planktonic cyanophyte genera in Lake Victoria (East Africa). Algol Stud Archiv für Hydrobiologie Suppl Vol 88:21–45Google Scholar
  36. Kosten S, Huszar VL, Bécares E, Costa LS, Donk E, Hansson LA, Jeppesen E, Kruk C, Lacerot G, Mazzeo N (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Change Biol 18(1):118–126Google Scholar
  37. L’Heureux ML, Takahashi K, Watkins AB, Barnston AG, Becker EJ, Di Liberto TE, Gamble F, Gottschalck J, Halpert MS, Huang B (2017) Observing and predicting the 2015/16 El Niño. Bull Am Meteor Soc 98(7):1363–1382Google Scholar
  38. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  39. Lewis Jr WM (1996) Tropical lakes: how latitude makes a difference. Perspectives in tropical limnology 4364Google Scholar
  40. Liu WT, Tang W, Hu H (1998) Spaceborne sensors observe El Niño’s effects on ocean and atmosphere in North Pacific. EOS Trans Am Geophys Union 79(21):249–252Google Scholar
  41. Liu X, Lu X, Chen Y (2011) The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: an 11-year investigation. Harmful Algae 10(3):337–343Google Scholar
  42. Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12(2):343–346Google Scholar
  43. Major Y, Kifle D, Niedrist GH, Sommaruga R (2017) An isotopic analysis of the phytoplankton–zooplankton link in a highly eutrophic tropical reservoir dominated by cyanobacteria. J Plankton Res 39(2):220–231Google Scholar
  44. Marinho MM, de Huszar V (2002) Nutrient availability and physical conditions as controlling factors of phytoplankton composition and biomass in a tropical reservoir (Southeastern Brazil). (With 8 figures and 6 tables). Archiv fur Hydrobiologie 153(3):443–468Google Scholar
  45. McGregor GB, Fabbro LD (2000) Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs: implications for monitoring and management. Lakes Reserv Res Manag 5(3):195–205Google Scholar
  46. Mesfin M, Tudorancea C, Baxter R (1988) Some limnological observations on two Ethiopian hydroelectric reservoirs: Koka (Shewa administrative district) and Finchaa (Welega administrative district). Hydrobiologia 157(1):47–55Google Scholar
  47. Moisander PH, Cheshire LA, Braddy J, Calandrino ES, Hoffman M, Piehler MF, Paerl HW (2012) Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. FEMS Microbiol Ecol 79(3):800–811Google Scholar
  48. Moustaka-Gouni M, Vardaka E, Tryfon E (2007) Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): steady-state dominance of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii. Hydrobiologia 575(1):129–140Google Scholar
  49. Nalewajko C, Murphy TP (2001) Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology 2(1):45–48Google Scholar
  50. Padisák J (1997) Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv Für Hydrobiologie Supplementband Monographische Beitrage 107(4):563–593Google Scholar
  51. Padisák J (1998) Sudden and gradual responses of phytoplankton to global climate change: case studies from two large, shallow lakes (Balaton, Hungary and the Neusiedlersee Austria/Hungary)Google Scholar
  52. Padisák J, Istvánovics V (1997) Differential response of blue-green algal groups to phosphorus load reduction in a large shallow lake: Balaton, Hungary. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 26(2):574–580Google Scholar
  53. Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1(1):27–37Google Scholar
  54. Paerl HW, Bland PT, Tucker J, Blackwell J (1983) The effect of salinity on the potential of a blue-green algal (Microcystis aeruginosa) bloom in the Neuse River Estuary, NC, NC Sea Grant Report 83-1, p 84Google Scholar
  55. Paerl HW, Xu H, McCarthy MJ, Zhu G, Qin B, Li Y, Gardner WS (2011) Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res 45(5):1973–1983Google Scholar
  56. Philip S, Kew SF, Jan van Oldenborgh G, Otto F, O’Keefe S, Haustein K, King A, Zegeye A, Eshetu Z, Hailemariam K (2018) Attribution analysis of the Ethiopian drought of 2015. J Clim 31(6):2465–2486Google Scholar
  57. Reichwaldt ES, Ghadouani A (2012) Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics. Water Res 46(5):1372–1393Google Scholar
  58. Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, CambridgeGoogle Scholar
  59. Robarts RD, Zohary T (1987) Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. N Z J Mar Freshw Res 21(3):391–399Google Scholar
  60. Rückert GV, Giani A (2004) Effect of nitrate and ammonium on the growth and protein concentration of Microcystis viridis Lemmermann (Cyanobacteria). Braz J Bot 27(2):325–331Google Scholar
  61. Salinger MJ (2005) Climate variability and change: past, present and future—an overview. In: Increasing climate variability and change. Springer, pp 9–29Google Scholar
  62. Schindler DW (2012) The dilemma of controlling cultural eutrophication of lakes. In: Proc R Soc B. The Royal Society, p rspb20121032Google Scholar
  63. Schindler DW, Hecky R, Findlay D, Stainton M, Parker B, Paterson M, Beaty K, Lyng M, Kasian S (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci 105(32):11254–11258Google Scholar
  64. Scott JT, McCarthy MJ (2010) Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnol Oceanogr 55(3):1265–1270Google Scholar
  65. Sinha R, Pearson LA, Davis TW, Burford MA, Orr PT, Neilan BA (2012) Increased incidence of Cylindrospermopsis raciborskii in temperate zones—is climate change responsible? Water Res 46(5):1408–1419Google Scholar
  66. Soares MCS, Huszar VL, Miranda MN, Mello MM, Roland F, Lürling M (2013a) Cyanobacterial dominance in Brazil: distribution and environmental preferences. Hydrobiologia 717(1):1–12Google Scholar
  67. Soares MCS, Lürling M, Huszar VL (2013b) Growth and temperature-related phenotypic plasticity in the cyanobacterium Cylindrospermopsis raciborskii. Phycol Res 61(1):61–67Google Scholar
  68. Stüken A, Rücker J, Endrulat T, Preussel K, Hemm M, Nixdorf B, Karsten U, Wiedner C (2006) Distribution of three alien cyanobacterial species (Nostocales) in northeast Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides. Phycologia 45(6):696–703Google Scholar
  69. Tilman D, Kilham SS, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13(1):349–372Google Scholar
  70. Wang H, Wang H (2009) Mitigation of lake eutrophication: loosen nitrogen control and focus on phosphorus abatement. Prog Nat Sci 19(10):1445–1451Google Scholar
  71. Watkinson A, O’Neil J, Dennison W (2005) Ecophysiology of the marine cyanobacterium, Lyngbya majuscula (Oscillatoriaceae) in Moreton Bay, Australia. Harmful Algae 4(4):697–715Google Scholar
  72. Wetzel RG, Likens GE (2000) Limnological analyses, 3rd edn. Springer, New YorkGoogle Scholar
  73. Whitehead P, Wilby R, Battarbee R, Kernan M, Wade AJ (2009) A review of the potential impacts of climate change on surface water quality. Hydrol Sci J 54(1):101–123Google Scholar
  74. Willén E, Ahlgren G, Tilahun G, Spoof L, Neffling M-R, Meriluoto J (2011) Cyanotoxin production in seven Ethiopian Rift Valley lakes. Inland Waters 1(2):81–91Google Scholar
  75. Yamamoto Y, Nakahara H (2005) Competitive dominance of the cyanobacterium Microcystis aeruginosa in nutrient-rich culture conditions with special reference to dissolved inorganic carbon uptake. Phycol Res 53(3):201–208Google Scholar
  76. Yamamoto Y, Shiah FK (2012) Factors related to the dominance of Cylindrospermopsis raciborskii (cyanobacteria) in a shallow pond in northern Taiwan. J Phycol 48(4):984–991Google Scholar
  77. Zhai P, Yu R, Guo Y, Li Q, Ren X, Wang Y, Xu W, Liu Y, Ding Y (2016) The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. J Meteorol Res 30(3):283–297Google Scholar
  78. Zhang M, Duan H, Shi X, Yu Y, Kong F (2012) Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change. Water Res 46(2):442–452Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Ethiopian Institute of Water ResourcesAddis Ababa UniversityAddis AbabaEthiopia
  2. 2.Aquatic Sciences, Fisheries and Aquaculture Stream, Department of Zoological SciencesAddis Ababa UniversityAddis AbabaEthiopia

Personalised recommendations