pp 1–13 | Cite as

Volatile organic compounds sensing by Li/Ti doped ethylene complex

  • Nilesh Ingale
  • Ravinder Konda
  • Ajay ChaudhariEmail author


First principles calculations and atom centered density matrix propagation (ADMP) molecular dynamics (MD) simulations are performed to study the adsorption of small volatile organic compounds (VOCs) like HCHO, CH4, CHF3 and CH3OH on Li/Ti metal doped ethylene complex (C2H4M, M = Li, Ti). The sensitivity of C2H4M complex upon VOCs adsorption is examined through change in structural parameters and electronic properties of a complex. The NBO charge analysis is carried out to measure charge transfer during adsorption process. The interaction between VOCs and C2H4M complex is analysed in detail with the help of PDOS plot and frontier molecular orbital analysis. Effect of VOCs adsorption on binding energy of Li/Ti metal atom to C2H4 substrate in C2H4M complex is also studied. The operating temperature and pressure of sensor is determined by calculating temperature and pressure dependent Gibbs free energy corrected adsorption energies and confirmed through ADMP–MD simulations. Quantum mechanical stability of VOCs adsorbed complexes is confirmed by vibrational frequency analysis. This study suggests potential application of C2H4M complex as a VOC gas sensing material for HCHO, CH4, CHF3 and CH3OH compounds.


VOCs Gas sensor DOS Ab initio calculation Molecular dynamics 



This work was supported by University Grants Commission, New Delhi, India under UGC-NFSC scheme/


  1. Bai, Z., Xie, C., Hu, M., Zhang, S.: Formaldehyde sensor based on Ni-doped tetrapod-shaped ZnO nanopowder induced by external magnetic field. Physica E 41, 235–239 (2008)CrossRefGoogle Scholar
  2. Bhattacharyya, P., Basu, P.K., Saha, H., Basu, S.: Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol-gel method. Sens. Actuators, B 124, 62–67 (2007)CrossRefGoogle Scholar
  3. Chen, L., Jin, H., Wang, L., Sun, L., Xu, H., Ding, L., Yu, A., Zhang, H.: Dynamic ultrasound-assisted extraction coupled on-line with solid support derivatization and high performance liquid chromatography for the the determination for formaldehyde in textiles. J. Chromatogr. A 1192, 89–94 (2008)PubMedCrossRefGoogle Scholar
  4. Chen, N., Li, X., Wang, X., Yu, J., Tang, J.Z., Akbar, S.A.: Enhanced room temperature sensing of Co3O4 interacted reduced graphene oxide based gas sensor. Sens. Actuators B 188, 902–908 (2013)CrossRefGoogle Scholar
  5. Chen, X., Yang, N., Ni, J., Cai, M., Ye, H., Wong, C.K.Y., Ren, T.: density functional calculations of methane adsorption on Graphene. IEEE Electron Device L 36, 1366–1368 (2015)CrossRefGoogle Scholar
  6. Chimowa, G., Tshabalala, Z.P., Akandea, A.A., Bepetec, G., Mwakikunga, B., Ray, S.S., Benecha, E.M.: Improving methane gas sensing properties of multi-walled carbon nanotubes by vanadium oxide filling. Sens. Actuators B 247, 11–18 (2017)CrossRefGoogle Scholar
  7. De Smedt, G., De Corte, F., Notele, R., Berghmans, J.: Comparison of two standered test methods for determining explosion limits of gases at atmospheric conditions. J. Hazard. Mater. 70, 105–127 (1999)PubMedCrossRefGoogle Scholar
  8. Deng, L., Ding, X., Zeng, D., Tian, S., Li, H., Xie, C.: Visible light activate mesoporous WO3 sensors with enhanced formaldehyde sensing property at room temperature. Sens. Actuators B 163, 260–266 (2012)CrossRefGoogle Scholar
  9. Fabriana, S.A., Jungbauer, F., Coenraads, H.P.: Inventory of the chemicals and the exposure of the workers’ skin to these at two leather factories in Indonesia. Int. Arch. Occup. Environ. Health 85, 517–526 (2012)CrossRefGoogle Scholar
  10. Frisch, M.J., Trucks, G., Schelegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R.: Gaussian 09. Gaussian Inc, Wallingford CT (2009)Google Scholar
  11. Gorelsky, S.I.: AOMix: Program for Molecular Orbital Analysis: Version 6.88. University of Ottawa, Ottawa (2013)Google Scholar
  12. Goresky, S.I., Lever, A.B.P.: Electronic structureand spectra of rhuthenium diimine complexes by density functional theory and INDO/S comparison of the two methods. J. Organomet. Chem. 635, 187–196 (2001)CrossRefGoogle Scholar
  13. Han, D., Song, P., Zhang, S., Zhang, H., Xu, Q., Wang, Q.: Enhanced methanol gas sensing performance of Ce-doped In2O3 porous nanosphere prepared by hydrothermal method. Sens. Actuators B 2016, 488–496 (2015)CrossRefGoogle Scholar
  14. Huang, Q., Zeng, D., Lib, H., Xie, C.: Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposite. Nanoscale 4, 5651 (2012)PubMedCrossRefGoogle Scholar
  15. Ingale, N., Konda, R., Chaudhari, A.: Organolithium complex as a gas sensing material for oxides from ab initio calculations and molecular dynamics simulations. Int. J. Quant. Chem. 118, e25623 (2018a)CrossRefGoogle Scholar
  16. Ingale, N., Konda, R., Chaudhari, A.: Gas sensing properties of organotitanium complex from first principles calculations and molecular dynamics simulations. Chem. Phys. Lett. 706, 247–254 (2018b)CrossRefGoogle Scholar
  17. Ingale, N., Konda, R., Chaudhari, A.: Metal doped ethylene complexes for hazardous gas molecule sensing. Struct. Chem. 30, 1057–1066 (2019)CrossRefGoogle Scholar
  18. Jain, A.K., Briegleb, B.P., Minschwaner, K., Wuebbles, D.J.: Radiative forcings and global warming potentials of 39 greenhouse gases. J. Geophys. Res. 105, 20773–20790 (2000)CrossRefGoogle Scholar
  19. Kalamse, V., Wadnerkar, N., Chaudhari, A.: Hydrogen storage in C2H4V and C2H4V+ organometallic compounds. J. Phys. Chem. C 114, 4704 (2010)CrossRefGoogle Scholar
  20. Kalamse, V., Wadnerkar, N., Deshmukh, A., Chaudhari, A.: Interaction of molecular hydrogen with Ni doped ethylene and acetylene complex. Int. J. Hydrog. Energy 37, 5114–5121 (2012)CrossRefGoogle Scholar
  21. Konwer, S., Guha, A.K., Dolui, S.K.: Graphene oxide filled conducting polyaniline composites as methanol sensing materials. J. Mater. Sci. 48, 1729–1739 (2013)CrossRefGoogle Scholar
  22. Kruse, J.A.: Methanol and ethylene glycol intoxication. Crit. Care Clin. 28, 661–711 (2012)PubMedCrossRefGoogle Scholar
  23. Kyasa, S.K.: Fluroform (CHF3). Synlett 26, 1911–1912 (2015)CrossRefGoogle Scholar
  24. Lee, C.Y., Chiang, C.M., Wang, Y.H., Ma, R.H.: A self heating gas sensor with integrated NiO thin film for formaldehyde detection. Sens. Actuators B 122, 503–510 (2007)CrossRefGoogle Scholar
  25. Lv, P., Tang, Z.A., Yu, J., Zhang, F.T., Wei, G.F., Huang, Z.X., Hu, Y.: Study on micro-gas sensor with SnO2-NiO sensitive film for indoor formaldehyde detection. Sens. Actuators B 132, 74–80 (2008)CrossRefGoogle Scholar
  26. Manceron, L., Andrews, L.: Infrared spectra and structures of lithium-ethylene [Li(C2H4)n (n = 1,2,3) and Li2C2H4] in solid argon. J. Phys. Chem. 90, 4514–4528 (1986)CrossRefGoogle Scholar
  27. Mendoza, F., Hernandez, D.M., Makarov, V., Febus, E., Weiner, B.R., Morell, G.: Room temperature gas sensor based on tin dioxide-carbon nanotubes composites films. Sens. Actuators B 190, 227–233 (2014)CrossRefGoogle Scholar
  28. Neri, G., Bonavita, A., Rizzo, G., Galvagno, S., Capone, S., Siciliano, P.: Methanol gas sensing properties of CeO2-Fe2O3 thin films. Sens. Actuators B 114, 687–695 (2006)CrossRefGoogle Scholar
  29. Noisel, N., Bouchard, M., Carrier, G.: Evaluation of the health impact of lowering the formaldehyde occupational exposure limit for quebec workers. Regul. Toxic. Pharmacol. 48, 118–127 (2007)CrossRefGoogle Scholar
  30. Philips, A.B., Shivram, B.S.: High capacity hydrogen in transition metal-ethylene complexes observed via Nanogravimetry. Phys. Rev. Lett. 100, 105505 (2008)CrossRefGoogle Scholar
  31. Prasad, A.K., Amirthapandian, S., Dhara, S., Dash, S., Murali, N., Tyagi, A.K.: Novel single phase vanadium dioxide nano structured films for methane sensing at near room temperature. Sens. Actuators B 191, 252–256 (2014)CrossRefGoogle Scholar
  32. Qin, J., Cui, Z., Yang, X., Zhu, S., Li, Z., Liang, Y.: Synthesis of three dimensionally ordered macroporous LaFeO3 with enhanced methanol gas sensing properties. Sens. Actuators B 209, 706–713 (2015)CrossRefGoogle Scholar
  33. Roy, R.K., Chowdhary, M.P., Pal, A.K.: Room temperature sensor based on carbon nanotubes and nano fibres for methane detection. Vaccum 77, 223–229 (2005)CrossRefGoogle Scholar
  34. Sattari, S., Reyhani, A., Khanlari, M.R., Khabazian, M., Heydari, H.: Synthesize of polyaniline-multi walled carbon nanotubes composite on the glass and silicon substrate and methane gas sensing behaviour of them at room temperature. J. Ind. Eng. Chem. 20, 1761–1764 (2014)CrossRefGoogle Scholar
  35. Schelegel, H.B., Iyenger, S.S., Li, X., Millam, J.M., Voth, G.A., Scuseria, G.E., Frish, M.J.: Ab initio molecular dynamics: propagating the density matrix with Gaussian orbitals III. Comparison with born-oppenheimer dynamics. J Chem. Phys. 117, 8694 (2002)CrossRefGoogle Scholar
  36. Shaalan, N.M., Rashad, M., Moharram, A.H., Abdel-Rahim, M.A.: Promising methane gas sensor synthesized by microwave- assisted Co3O4 nanoparticles. Mat. Sci. Semicond. Process. 46, 1–5 (2016)CrossRefGoogle Scholar
  37. Stocker, T.F., Qin, D., Platneer, G., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midglay, P.M.: Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge (2013)Google Scholar
  38. Tavhare, P., Kalamse, V., Krishna, R., Titus, E., Chaudhari, A.: Hydrogen adsorption on Ce-ethylene complex using chemical methods. Int. J. Hydrog. Energy 41, 11730–11735 (2016)CrossRefGoogle Scholar
  39. Trujillo, R., Lindell, K.F.: New formaldehyde base disinfectants. Appl. Environ. Microbial. 26, 106–110 (1973)Google Scholar
  40. Vuong, N.M., Hieu, N.M., Hieu, H.N., Yi, H., Kim, D., Han, Y., Kim, M.: Ni2O3 decorated SnO2 particulate films for methane gas sensors. Sens. Actuators B 192, 327–333 (2014)CrossRefGoogle Scholar
  41. Wadnerkar, N., Kalamse, V., Chaudhari, A.: Hydrogen uptake capacity of C2H4Sc and its ions: a density functional study. J. Comput. Chem. 31, 1656–1661 (2010a)PubMedCrossRefGoogle Scholar
  42. Wadnerkar, N., Kalamse, V., Chaudhari, A.: Higher hydrogen uptake capacity of C2H4Ti+ than C2H4Ti: a quantum chemical study. Theor. Chem. Acc. 127, 285–292 (2010b)CrossRefGoogle Scholar
  43. Wadnerkar, N., Kalamse, V., Philips, A.B., Shivram, B.S., Chaudhari, A.: Vibrational spectra of Ti:C2H4(nH2) and Ti:C2H4(nD2) complexes and the equilibrium isotope effect: calculations and experiment. Int. J. Hydrog. Energy 36, 9727–9732 (2011)CrossRefGoogle Scholar
  44. Wang, X., Ding, B., Sun, M., Yu, J., Sun, G.: Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance based formaldehyde sensors. Sens. Actuators B 144, 11–17 (2010)CrossRefGoogle Scholar
  45. Wang, X., Zhi, L., Mullen, K.: Transparent conductive graphene electrodes for Dye sensitized solar cells. Nano Lett. 8, 323–327 (2008)PubMedCrossRefGoogle Scholar
  46. Wen, Z., Tian-Mo, L.: Gas sensing properties of SnO2-TiO2 based sensor for volatile organic compound gas and its sensing mechanism. Physica B 405, 1345–1348 (2010)CrossRefGoogle Scholar
  47. Xie, H., Sheng, C., Chen, X., Wang, X., Li, Z., Zhou, J.: Multiwalled carbon nanotubes gas sensors modified with amino group to detect low concentration of formaldehyde. Sens. Actuators B 168, 34–38 (2012)CrossRefGoogle Scholar
  48. Zhao, M., Yang, F., Xue, Y., Xiao, D.: Adsorption of HCN on reduced graphene oxides: a first principles study. J. Mol. Model. 20, 2214–2223 (2014)PubMedCrossRefGoogle Scholar
  49. Zhu, H., Lu, Z., Cai, J., Li, J., Gao, L.: Development of a head space-SPME-GC/MS method to determine volatile organic compounds released from textiles. Polym. Test. 28, 521–527 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsThe Institute of ScienceMumbaiIndia

Personalised recommendations