pp 1–10 | Cite as

Impact of H2O and CO2 on methane storage in metal–organic frameworks

  • Daniel V. GonçalvesEmail author
  • Randall Q. Snurr
  • Sebastião M. P. Lucena


We investigated eight representative metalorganic frameworks for methane storage using molecular simulation. Validated force fields were used to calculate the amount adsorbed for pure methane and its mixtures with CO2 and H2O at 5.8 and 65 bar at 298 K within the composition limits specified for natural gas. Within the analyzed concentrations, the MOFs without open metal sites were minimally influenced by the presence of CO2 and H2O. However, for the MOFs with open metal sites, the presence of these species proved to be harmful. We found that concentrations as low as 25 ppm of water can reduce the delivered volume of methane by more than 20%. A detailed analysis of the adsorption mechanisms leading to this poisoning is presented. These results highlight the possible limitations of MOFs with open metal sites for use in natural gas storage.


Methane storage Natural gas MOF Adsorption CO2 Water Molecular simulation 



This work has been supported by the CAPES Foundation under Grant No. 6650/15-5. RQS gratefully acknowledges support from the U.S. Department of Energy under Award DE-FG02-08ER15967.

Supplementary material

10450_2019_165_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2504 kb)


  1. ARPA-E: Arpa-E. https://Arpa-E-Foa.Energy.Gov/. (2012)
  2. Barthelet, K., Marrot, J., Riou, D., Férey, G.: A breathing hybrid organic–inorganic solid with very large pores and high magnetic characteristics. J. Am. Chem. Soc. 2, 281–284 (2002)Google Scholar
  3. Bhattacharjee, S., Jang, M.S., Kwon, H.J., Ahn, W.S.: Zeolitic imidazolate frameworks: synthesis, functionalization, and catalytic/adsorption applications. Catal. Surv. Asia 18, 101–127 (2014)CrossRefGoogle Scholar
  4. Chae, H.K., Siberio-Pérez, D.Y., Kim, J., Go, Y., Eddaoudi, M., Matzger, A.J., O’Keeffe, M., Yaghi, O.M.: A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004)CrossRefGoogle Scholar
  5. Chen, G., Tan, S., Koros, W.J., Jones, C.W.: Metal organic frameworks for selective adsorption of t-butyl mercaptan from natural gas. Energy Fuels 29, 3312–3321 (2015)CrossRefGoogle Scholar
  6. Chui, S.S.Y., Lo, S.M.F., Charmant, J.P.H., Orpen, W.I.D.: A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148–1150 (1999)CrossRefGoogle Scholar
  7. Dietzel, P.D.C., Morita, Y., Blom, R., Fjellvåg, H.: An in situ high-temperature single-crystal investigation of a dehydrated metal–organic framework compound and field-induced magnetization of one-dimensional metal–oxygen chains. Angew. Chem. Int. Ed. 44, 6354–6358 (2005)CrossRefGoogle Scholar
  8. Dietzel, P.D.C., Panella, B., Hirscher, M., Blom, R., Fjellvåg, H.: Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem. Commun. 1, 959 (2006)CrossRefGoogle Scholar
  9. Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81–101 (2016)CrossRefGoogle Scholar
  10. Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., Yaghi, O.M.: Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002)CrossRefGoogle Scholar
  11. EPA: Fast Facts: U.S. Transportation Sector Greenhouse Gas Emissions, 1990–2015 (EPA-420-F-17-013, July 2017). 4 (2017)Google Scholar
  12. European Environment Agency: GHG emissions by sector in the EU-28, 1990–2016.
  13. Farrusseng, D., Daniel, C., Gaudillère, C., Ravon, U., Schuurman, Y., Mirodatos, C., Dubbeldam, D., Frost, H., Snurr, R.Q.: Heats of adsorption for seven gases in three metal–organic frameworks: systematic comparison of experiment and simulation. Langmuir 25, 7383–7388 (2009)CrossRefGoogle Scholar
  14. Ghosh, P., Kim, K.C., Snurr, R.Q.: Modeling water and ammonia adsorption in hydrophobic metal–organic frameworks: single components and mixtures. J. Phys. Chem. C 118, 1102–1110 (2014)CrossRefGoogle Scholar
  15. Hyeon, S., Kim, Y.-C., Kim, J.: Computational prediction of high methane storage capacity in V-MOF-74. Phys. Chem. Chem. Phys. 19, 21132–21139 (2017)CrossRefGoogle Scholar
  16. Koh, H.S., Rana, M.K., Wong-Foy, A.G., Siegel, D.J.: Predicting methane storage in open-metal-site metal–organic frameworks. J. Phys. Chem. C 119, 13451–13458 (2015)CrossRefGoogle Scholar
  17. Koh, K., Wong-Foy, A.G., Matzger, A.J.: A crystalline mesoporous coordination copolymer with high microporosity. Angew. Chemie Int. Ed. 47, 677–680 (2008)CrossRefGoogle Scholar
  18. Konstas, K., Osl, T., Yang, Y., Batten, M., Burk, N., Hill, A., Hill, M.: Methane storage in metalorganic frameworks. J. Mater. Chem. 22, 16698–16708 (2012)CrossRefGoogle Scholar
  19. Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999)CrossRefGoogle Scholar
  20. Lin, L., Lee, K., Gagliardi, L., Neaton, J., Smit, B.: Force-field development from electronic structure calculations with periodic boundary conditions: applications to gaseous adsorption and transport in metal–organic frameworks. J. Chem. Theory Comput. 10, 1477–1488 (2014)CrossRefGoogle Scholar
  21. Lucena, S.M.P., Gomes, V.A., Gonçalves, D.V., Mileo, P.G.M., Silvino, P.F.G.: Molecular simulation of the accumulation of alkanes from natural gas in carbonaceous materials. Carbon N. Y. 61, 624–632 (2013)CrossRefGoogle Scholar
  22. Lucena, S.M.P., Mileo, P.G.M., Silvino, P.F.G., Cavalcante, C.L.: Unusual adsorption site behavior in PCN-14 metalorganic framework predicted from Monte Carlo simulation. J. Am. Chem. Soc. 133, 19282–19285 (2011)CrossRefGoogle Scholar
  23. Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B. 102, 2569–2577 (1998)CrossRefGoogle Scholar
  24. Mileo, P.G.M., Cavalcante, C.L., Möllmer, J., Lange, M., Hofmann, J., Lucena, S.M.P.: Molecular simulation of natural gas storage in Cu-BTC metal–organic framework. Colloids Surf. A Physicochem. Eng. Asp. 462, 194–201 (2014)CrossRefGoogle Scholar
  25. Mota, J.P.B.: Impact of gas composition on natural gas storage by adsorption. AIChE J. 45, 986–996 (1999)CrossRefGoogle Scholar
  26. Nazarian, D., Camp, J.S., Sholl, D.S.: A comprehensive set of high-quality point charges for simulations of metal–organic frameworks. Chem. Mater. 28, 785–793 (2016)CrossRefGoogle Scholar
  27. Park, K.S., Ni, Z., Côté, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., Yaghi, O.M.: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A. 103, 10186–10191 (2006)CrossRefGoogle Scholar
  28. Parrish, W., Kidnay, A.: Fundamentals of Natural Gas Processing. CRC, Boca Raton (2006)Google Scholar
  29. Peng, X., Lin, L.-C., Sun, W., Smit, B.: Water adsorption in metalorganic frameworks with open-metal sites. AIChE J. 61, 677–687 (2015)CrossRefGoogle Scholar
  30. Potoff, J.J., Siepmann, J.I.: Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 47, 1676–1682 (2001)CrossRefGoogle Scholar
  31. Pupier, O., Goetz, V., Fiscal, R.: Effect of cycling operations on an adsorbed natural gas storage. Chem. Eng. Process. Process Intensif. 44, 71–79 (2005)CrossRefGoogle Scholar
  32. Rappé, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A., Skid, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)CrossRefGoogle Scholar
  33. Rick, S.W.: A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums. J. Chem. Phys. 120, 6085–6093 (2004)CrossRefGoogle Scholar
  34. Ridha, F.N., Yunus, R.M., Rashid, M., Ismail, A.F.: Dynamic delivery analysis of adsorptive natural gas storages at room temperature. Fuel Process. Technol. 88, 349–357 (2007)CrossRefGoogle Scholar
  35. Silva, F.W.M., Magalhães, G.M., Jardim, E.O., Azevedo, D.C.S.De, Lucena, S.M.P.De, Pesquisa, G.De: CO2 Adsorption on Ionic Liquid-Modified Cu-BTC: Experimental and Simulation Study, pp. 223–242. Sage, Thousand Oaks (2014)Google Scholar
  36. Sun, W., Lin, L., Peng, X., Smit, B.: Computational screening of porous metal–organic frameworks and zeolites for the removal of SO2 and NOx from flue gases. AIChE J. 60, 2314 (2014)CrossRefGoogle Scholar
  37. Valenzano, L., Civalleri, B., Chavan, S., Palomino, G.T., Areán, C.O., Bordiga, S.: Computational and experimental studies on the adsorption of CO, N2 and CO2 on Mg-MOF-74. J. Phys. Chem. C 114, 11185–11191 (2010)CrossRefGoogle Scholar
  38. Walton, K.S., LeVan, M.D.: Natural gas storage cycles: influence of nonisothermal effects and heavy alkanes. Adsorption 12, 227–235 (2006)CrossRefGoogle Scholar
  39. Wegrzyn, J., Gurevich, M.: Adsorbent storage of natural gas. Appl. Energy 55, 71–83 (1996)CrossRefGoogle Scholar
  40. Wilmer, C.E., Kim, K.C., Snurr, R.Q.: An extended charge equilibration method. J. Phys. Chem. Lett. 3, 2506–2511 (2012)CrossRefGoogle Scholar
  41. Wu, D., Guo, X., Sun, H., Navrotsky, A.: Thermodynamics of methane adsorption on copper HKUST-1 at low pressure. J. Phys. Chem. Lett. 6, 2439–2443 (2015)CrossRefGoogle Scholar
  42. Wu, H., Simmons, J.M., Liu, Y., Brown, C.M., Wang, X.Sen, Shengqian, M., Peterson, V.K., Southon, P.D., Kepert, C.J., Zhou, H.C., Yildirim, T., Zhou, W.: Metal–organic frameworks with exceptionally high methane uptake: where and how is methane stored? Chemistry 16, 5205–5214 (2010)CrossRefGoogle Scholar
  43. Wu, H., Zhou, W., Yildirim, T.: High-capacity methane storage in metal–organic frameworks M2(dhtp): the important role of open metal sites. J. Am. Chem. Soc. 131, 13 (2009)Google Scholar
  44. Yazaydin, A.O., Snurr, R.Q., Park, T.-H., Koh, K., Liu, J., Levan, M.D., Benin, A.I., Jakubczak, P., Lanuza, M., Galloway, D.B., Low, J.J., Willis, R.R.: Screening of metal–organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198–18199 (2009)CrossRefGoogle Scholar
  45. Zhang, H., Deria, P., Farha, O.K., Hupp, J.T., Snurr, R.Q.: A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal–organic frameworks. Energy Environ. Sci. 8, 1501–1510 (2015)CrossRefGoogle Scholar
  46. Zhang, Z., Xian, S., Xia, Q., Wang, H., Li, Z., Li, J.: Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF-8 via postsynthetic modification. AIChE J. 59, 2195–2206 (2013)CrossRefGoogle Scholar
  47. Zhou, W., Wu, H., Hartman, M.R., Yildirim, T.: Hydrogen and methane adsorption in metalorganic frameworks: a high-pressure volumetric study. J. Phys. Chem. C 111, 16131–16137 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Grupo de Pesquisa em Separações por Adsorção – GPSA, Dept. Engenharia QuímicaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Department of Chemical & Biological EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations