Advertisement

Adsorption

, Volume 26, Issue 2, pp 303–316 | Cite as

Adsorption of Triton X-100 in aqueous solution on activated carbon obtained from waste tires for wastewater decontamination

  • Aida Mireya Ramírez-Arias
  • Juan Carlos Moreno-PirajánEmail author
  • Liliana Giraldo
Article
  • 79 Downloads

Abstract

Adsorption of Triton X-100 non-ionic surfactant in aqueous solution on activated carbon was performed. The activated carbon was prepared from waste tires by chemical impregnation at 10, 20, 30, and 40% w·w−1 of potassium hydroxide. Two carbonization temperatures, 700 and 900° C were used with a heating rate of 2 °C·min−1 and a 3 h retention time in N2 flow of 100 mL·min−1. The carbons obtained were characterized by N2 adsorption at − 196 °C, scanning electron microscopy, infrared microscopy, thermogravimetric analysis, and titration of functional groups. In adsorption studies of Triton X-100, the amount of adsorbed Triton X-100 was characterized by High-performance Liquid Chromatography and Langmuir, Freundlich, Toth, and Redlich-Peterson models were evaluated. The solids showed an area between 42 and 528 m2·g−1 with characteristic isotherms of micro-mesoporous solids, and a pore distribution of 7.0 to 8.0 Å by Dubinin-Astakov with a chemical surface having acid and basic groups. The carbon that adsorbed the most Triton X-100 was QK409 with Q0 220 mg·g−1.

Keywords

Adsorption Activated carbon Surfactant Waste tire Waste water Triton X-100 

Notes

Acknowledgements

The authors would like to thank to the Research and Postgraduate Committee-Faculty of Sciences of the Universidad de los Andes, Colombia for the funding of research projects and the presentation of results in academic events in 2018-1, according to the project “Obtaining of activated carbon for the decontamination of surfactant in wastewater”. The authors also appreciate the grant for the funding of research programs for Associate Professors, Full Professors, and Emeritus Professors announced by the Faculty of Sciences of the University of the Andes, 20-12-2019-2020, 2019, according to the project “Enthalpy, free energy and adsorption energy of the activated carbon interaction and solutions of emerging organic compounds”.

References

  1. Abd-allah, A., Srorr, T.: Biodegradation of anionic surfactants in the presence of organic contaminants. Water Res. 32(3), 944–947 (1998)Google Scholar
  2. Achaw, O.W.: A Study of the Porosity of Activated Carbons Using the Scanning Electron Microscope. Scanning Electron Microscopy, pp. 473–490. Intech, Rijeka (2012)Google Scholar
  3. Adamson, A.: Physical Chemistry of Surfaces. Wiley, New York (1990)Google Scholar
  4. Ahmadpour, A., Do, D.: The preparation of active carbons from coal by chemical and physical activation. Carbon 34(4), 471–479 (1996)Google Scholar
  5. Bazan, A., Nowicki, P., Półrolniczak, P., Pietrzak, R.: Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops. J. Therm. Anal. Calorim. 125(3), 1199–1204 (2016)Google Scholar
  6. Betancur, M., Martínez, J., Murillo, R.: Production of activated carbon by waste tire thermochemical. J. Hazard. Mater. 168, 882–887 (2009)PubMedGoogle Scholar
  7. Boehm, H.: Surface oxides on carbon and their analysis: a critical assessment. Carbon 40, 145–149 (2002)Google Scholar
  8. Brunauer, S., Emmett, P., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)Google Scholar
  9. Cardona, L., Betancur, M., Martínez, J.: Transformación termoquímica de neumáticos usados en una sola etapa en atmósfera de CO2 para la obtención de carbón activado y comparación con el obtenido en dos etapas. Revista Investigaciones Aplicadas. 9, 57–69 (2015)Google Scholar
  10. Datta, M., Fenton, J., Broomam, E.: Environmental aspects of electrochemical technology: Applications in electronics, Ilustrada (1997)Google Scholar
  11. Di, C., Galgano, A., Branca, C.: Effects of potassium hydroxide impregnation on wood pyrolysis. Energy Fuels 23, 1045–1054 (2009)Google Scholar
  12. Dinesh, M.: Water Policy Science and Politics. Elsevier, India (2018)Google Scholar
  13. Fazara, U., Jainoo, M., Ismail, K., Hussin, K., Fahmi, M.: Physicochemical properties of pyrolitic carbon black from waste tyres. Key Eng. Mater. 182, 178–182 (2014)Google Scholar
  14. Fazley, M., Wang, F., Li, Y., Wang, L.: Porous Structures from Biobased Synthetic Polymers via Freeze-Drying. Springer, Germany (2017)Google Scholar
  15. Foo, K., Hameed, B.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156(1), 2–10 (2010)Google Scholar
  16. Freundlich, H.: Over the adsorption in solution. J. Phys. Chem. 57, 385–471 (1906)Google Scholar
  17. Giles, C., MacEwan, T., Nakhwa, S., Smith, D.: Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 14, 3973–3993 (1960)Google Scholar
  18. Gomez, I., Garcia, M., Salinas, C., Linares, C.: Activated carbons from spanish coal. 2. Chemical activation. Energy Fuels 10, 1108 (1996)Google Scholar
  19. Jiménez, A., Salazar, M., Gutiérrez, M., Monroy, O.: Anaerobic digestion of a nonionic surfactant: inhibition effect and biodegradation. Water Sci. Technol. 44(4), 175–181 (2001)Google Scholar
  20. Johnson, M.: Detergents: Triton X-100, Tween-20. Mater. Methods 3, 163 (2013)Google Scholar
  21. Kim, S., Park, J., Chun, H.: Pyrolysis kinetics of scrap tire rubbers. I: using DTG and TGA. J. Environ. Eng. 121, 507–514 (1995)Google Scholar
  22. Koley, D., Bard, A.: Triton X-100 concentration effects on membrane permeability of a single HeLa cell by scanning electrochemical microscopy (SECM). Proc. Natl. Acad. Sci. 107, 16783–16787 (2010)PubMedGoogle Scholar
  23. Langmuir, I.: The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38(11), 2221–2295 (1916)Google Scholar
  24. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)Google Scholar
  25. Lin, S.-C., Chen, Y.-C., Lin, Y.-M.: General approach for the development of high-performance liquid chromatography methods for biosurfactant analysis and purification. J. Chromatogr. A 825(2), 149–159 (1998)Google Scholar
  26. Lippens, B., Linsen, B., Boer, J.: Studies on pore systems in catalysts I. The adsorption of nitrogen; apparatus and calculation. J. Catal. 3, 32–37 (1964)Google Scholar
  27. Mejía, A., Requena, B., Rivera, D., Pardón, M., Rais, J. Agua potable y saneamiento en América Latina y el Caribe: metas realistas y soluciones sostenibles. Caracas: CAF. http://scioteca.caf.com/handle/123456789/499 (2012). Accessed 20 Oct 2018
  28. Miguel, G., Fowler, G., Sollars, C.: Pyrolysis of tire rubber: porosity and adsorption characteristics of the pyrolytic chars. Ind. Eng. Chem. 37, 2430–2435 (1998)Google Scholar
  29. Minoui, S., Minai, D.: Effect of Triton X-100 on bioremediation of PAHs of medium crude oil in soil. Bioremediation, Biodivers Bioavailab. 3(2), 79–83 (2009)Google Scholar
  30. Miranda, R., Segovia, C., Sosa, C.: Pirólisis de Llantas Usadas: Estudio Cinético e Influencia de Variables de Operación. Inf. Tecnol. 17(2), 7–14 (2006)Google Scholar
  31. Mohan, P., Nakhla, G., Yanful, E.: Biodegradability of surfactants under aerobic, anoxic, and anaerobic conditions. J. Environ. Eng. 132, 279–283 (2006)Google Scholar
  32. Niranjana, E., Raghavendra, R., Kumara, B., Sherigara, B., Jayadevappa, H.: Studies on adsorption of Triton X-100 at carbon paste and ceresin wax carbon paste electrodes and the enhancement effect in dopamine oxidation by cyclic voltammetry. Int. J. Electrochem. Sci. 2, 923–934 (2007)Google Scholar
  33. Otowa, T., Tanibata, R., Itoh, M.: Production and adsorption characteristics of MAXSORB: high –surface-area activate carbon. Gas Sep. Purif. 7(4), 241–245 (1993)Google Scholar
  34. Paria, S., Khilar, K.: A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv. Colloid Interface Sci. 110, 75–95 (2004)PubMedGoogle Scholar
  35. Parra, R.: Digestión anaeróbica: mecanismos biotecnológicos en el tratamiento de aguas residuales y su aplicación en la industria alimentaria. Producción + limpia. 10(2), 142–159 (2015)Google Scholar
  36. Passaponti, M., Rosi, L., Savastano, M., Giurlani, W., Miller, H.: Recycling of waste automobile tires: transforming char in oxygen reduction reaction catalysts for alkaline fuel cells. J. Power Sour. 427, 85–90 (2019)Google Scholar
  37. Pedram, A., Yusoff, N., Udoncy, O., Mahat, A., Pedram, P., Babalola, A.: Integrated forward and reverse supply chain: a tire case study. Waste Manage. 60, 460–470 (2017)Google Scholar
  38. Redlich, O., Peterson, D.: A useful adsorption isotherm. J. Phys. Chem. 63(6), 1024–1026 (1959)Google Scholar
  39. Robson, R., Dennis, E.: The size, shape, and hydration of nonionic surfactant micelles Triton X-100. J. Phys. Chem. 81(11), 1075–1078 (1997)Google Scholar
  40. Rofiqul, I., Haniu, M., Rafiqul, M.: Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: product yields, compositions and related properties. Fuel 87, 3112–3122 (2008)Google Scholar
  41. Romero, M., Rodríguez, A., Nieves, J.: Adsorption and desorption of Triton X-100 in polystyrene particles with different functionality. J. Colloid Interface Sci. 227, 329–333 (2000)Google Scholar
  42. Rosen, M.: Surfactants and Interfacial Phenomena, 3rd edn. Wiley, New York (2004)Google Scholar
  43. Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids Principles, pp. 1–6. Methodology and Applications. Academic Press, San Diego (1999)Google Scholar
  44. Seidelt, S., Müller, M., Bockhorn, H.: Description of tire pyrolysis by thermal degradation behaviour of main components. J. Anal. Appl. Pyrolysis. 75, 11–18 (2006)Google Scholar
  45. Stuart, B.: Infrared Spectroscopy: Fundamentals and Applications. Wiley, Hoboken (2004)Google Scholar
  46. Talu, O., Meunier, F.: Adsorption of associating molecules in micropores and application to water on carbon. AIChE J. 42(3), 809–819 (1996)Google Scholar
  47. Technavio.: Global Triton X-100 Market - Rising Prominence for Biosurfactants To Promote Growth. Publishing Business Wire. https:/businesswire.com/news/home/20180213006228/en/Global-Triton-X-100-Market—Rising-Prominence (2018). Accessed Sept 2018Google Scholar
  48. Teng, H., Lin, C., Hsu, L.: Production of activated carbons from pyrolysis of waste tires impregnated with potassium hydroxide. J. Air Waste Manage. Assoc. 50, 1940–1946 (2000)Google Scholar
  49. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez, F., Rouquerol, J., Sing, J.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)Google Scholar
  50. Torrado, C., Franco, A., Fernández, C.: Development of adsorbents from used tire rubber: their use in the adsorption of organic and inorganic solutes in aqueous solution. Fuel Sci. Technol. 92(2), 206–212 (2011)Google Scholar
  51. Toth, J.: State equations of the solid gas interface layer. Acta Chem. Acad. Hung. 69, 311–317 (1971)Google Scholar
  52. Wang, J., Kaskel, S.: KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23715 (2012)Google Scholar
  53. Yakout, M.: Monitoring the changes of chemical properties of rice straw-derived biochars modified by different oxidizing agents and their adsorptive performance for organics. Bioremediat. J. 19, 171–182 (2015)Google Scholar
  54. Yakout, S., Nayl, A.: Removal of cationic surfactant (CTAB) from aqueous solution on to activated carbon obtained from corncob. Carbon- Sci. Technol. 2, 107–116 (2009)Google Scholar
  55. Zahoor, M.: Separation of surfactants from water by granular activated carbon/ultrafiltration hybrid process. Desalin. Water Treat. 57(5), 1988–1994 (2016)Google Scholar
  56. Zeng, G., Zhong, H., Yuan, X., Fu, M., Wang, W., Huang, G.: Codegradation with glucose of four surfactants, CTAB, Triton X-100, SDS and rhamnolipid, in liquid culture media and compost matrix. Biodegradation 18, 303–310 (2007)PubMedGoogle Scholar
  57. Zeppieri, S., Ramírez, Y., Molina, J., Lopéz, A.: Estudio experimental de la tensión interfacial transitoria para sistemas Alcanos-Agua-Triton X-100 empleando la Técnica de la Gota Emergente. Inf. Tecnol. 20(6), 125–135 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Aida Mireya Ramírez-Arias
    • 1
  • Juan Carlos Moreno-Piraján
    • 1
    Email author
  • Liliana Giraldo
    • 2
  1. 1.Departamento de Química, Facultad de CienciasUniversidad de los AndesBogotáColombia
  2. 2.Departamento de Química, Facultad de CienciasUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations