Advertisement

Adsorption

pp 1–38 | Cite as

Medical oxygen concentrators: a review of progress in air separation technology

  • Mark W. AckleyEmail author
Invited Review Article

Abstract

Air separation by adsorption to produce oxygen for industrial and medical applications represents one of several important commercialized adsorption processes. Fueled by the introduction of synthetic zeolites, adsorbent and process development for air separation have progressed steadily over the last five decades. Early progress was driven primarily by large-scale industrial applications, however, small-scale medical oxygen concentrators (MOC) soon followed. This review presents an overview of the various types of commercially available MOCs, as well as the underlying adsorption technology. Key developments and essential concepts are summarized for air separation technology as it applies to both large and small-scale systems. Specific research targeting oxygen concentrators is also reviewed. The introduction of pulse flow oxygen conserving methodology has given rise to portable concentrators. Pulse flow represents not only a disruptive technology for the small-scale medical products, but also introduces operational challenges not present in large-scale industrial air separation. Process intensification utilizing small adsorbent particles and fast cycles is reviewed along with other key developments in air separation that apply to both large and small-scale systems. Challenges to further improvements in the medical concentrators are explored and opportunities for future research are identified.

Keywords

Air separation Medical oxygen concentrator Portable oxygen concentrator LiX adsorbents Pressure swing adsorption Intensification 

Notes

Acknowledgements

The author is grateful for informative discussions with the following individuals: S. De Noia (Honeywell UOP), G. Halsinger (Gardner Denver Thomas), P. Hansen (Inogen), K. Knaebel (Adsorption Research, Inc.), B. Meyers (Inogen), B. Taylor (Inogen), and K. Weston (Zeochem®). Thanks also goes to C. Barnes (Caire, Inc.), O. Philardeau (Arkema Ceca), and R. Lee (Jalon) for providing useful product information. Constructive comments on this manuscript from P. Barrett, A. Moran and N. Stephenson (all from Linde PLC) are greatly appreciated.

References

  1. Ackley, M.W.: Multilayer adsorbent beds for PSA gas separation. US Patent 6,152,991 (2000)Google Scholar
  2. Ackley, M.W., Leavitt, F.W.: Rate-enhanced gas separation. US Patent 6,500,234 B1 (2002)Google Scholar
  3. Ackley, M.W.: Adsorptive separation performance improvements resulting from enhanced adsorption rate. 225th ACS National Meeting, New Orleans (2003a)Google Scholar
  4. Ackley, M.W., Rege, S.U., Saxena, S.: Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater. 61, 25–42 (2003b)CrossRefGoogle Scholar
  5. Ackley, M.W., Smolarek, J., Leavitt, F.W.: Pressure swing adsorption gas separation method, using adsorbents with high intrinsic diffusivity and low pressure ratios. US Patent 6,506,234 B1 (2003c)Google Scholar
  6. Ackley, M.W., Zhong, G.: Medical oxygen concentrator. US Patent 6,551,384 B1 (2003d)Google Scholar
  7. Ackley, M.W., Barrett, P.A.: Silver-exchanged zeolites and methods of manufacturing therefor. US Patent 7,455,718 B2 (2008).Google Scholar
  8. Ackley, M.W., Barrett, P.A., Stephenson, N.A., Kikkinides, E.S.: High rate compositions. US Patent 9,533,280 B2 (2017)Google Scholar
  9. Alpay, E., Kenney, C.N., Scott, D.M.: Adsorbent particle size effects in the separation of air by rapid pressure swing adsorption. Chem. Eng. Sci. 49, 3059–3075 (1994)CrossRefGoogle Scholar
  10. Appel, W.S., Winter, D.P., Sward, B.K., Sugano, M., Salter, E., Bixby, J.A.: Portable oxygen concentration system and method of using the same. US Patent 6,691,702 (2004)Google Scholar
  11. Armond, J.W., Webber, D.A.: Adsorption system. US Patent 3,923,477 (1975)Google Scholar
  12. Babicki, M.L., Keefer, B.G., Gibbs, A.C., LaCava, A.I., Fitch, F.: PSA with adsorbents sensitive to contaminants. US Patent 7,037,358 B2 (2006)Google Scholar
  13. Baksh, M.S.A., Kikkinides, E.S., Yang, R.T.: Lithium type X zeolite as a superior sorbent for air separation. Sep. Sci. Technol. 27, 277–294 (1992)CrossRefGoogle Scholar
  14. Baksh, M.S.A., Kibler, V. J., Schaub, H.R.: Pressure swing adsorption process. US Patent 5,518,526 (1996)Google Scholar
  15. Batta, L.B.: Selective adsorption gas separation process. US Patent 3,636,679 (1972)Google Scholar
  16. Barrett, P.A., Pontonio, S.J., Kechagia, P., Stephenson, N.A., Weston, K.C.: Adsorbent composition. US Patent 9,050,582 B2 (2015)Google Scholar
  17. Berlin, N.H.: Method for providing oxygen-enriched environment. US Patent 3,280,536 (1966)Google Scholar
  18. Berlin, N.H.: Vacuum cycle adsorption. US Patent 3,313,091 (1967)Google Scholar
  19. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport phenomena. Wiley, New York (1960)Google Scholar
  20. Bliss, P.L., McCoy, R.W., Adams, A.B.: A bench study comparison of demand oxygen delivery systems and continuous flow oxygen. Respir. Care 44, 925–931 (1999)Google Scholar
  21. Bliss, P.L., Atlas, C.R., Halperin, S.C.: Portable oxygen concentrator. US Patent 7,837,761 B2 (2010)Google Scholar
  22. Boissin, J.C., Hennebel, V.: Portable home oxygen therapy medical equipment. US Patent 6,314,957 B1 (2001)Google Scholar
  23. Breck, D.W.: Zeolite molecular sieves: structure, chemistry and use. Wiley, New York (1974)Google Scholar
  24. Campbell, M.J., Lagree, D.A., Smolarek, J.: Advances in oxygen production, by pressure swing adsorption. In: Gaden, E.L., Wenzel, L.A. (eds.), Cryogenic Processes and Machinery. AIChE Symposium Series vol 89, no. 294, pp. 104–108, AIChE, New York (1993)Google Scholar
  25. Carlin, B.W., McCoy, R., Diesem, R.: 2 is not 2 is not 2, the fundamental flaw in perception when providing long-term oxygen therapy (LTOT) to a patient. Respir. Ther. 13, 29–32 (2018)Google Scholar
  26. Cassidy, R.T., Holmes, E.S.: Twenty-five years of progress in “adiabatic” adsorption processes. AIChE Symp. Ser. 80 (No. 233), 68–75 (1984)Google Scholar
  27. Celik, C.E., Ackley, M.W., Smolarek, J.: Modular compact adsorption bed. US Patent 8,268,043 B2 (2012)Google Scholar
  28. Chai, S.W., Kothare, M.V., Sircar, S.: Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator. Ind. Eng. Chem. Res. 50, 8703–8710 (2011)CrossRefGoogle Scholar
  29. Chai, S.W., Kothare, M.V., Sircar, S.: Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator. Adsorption 18, 87–102 (2012)CrossRefGoogle Scholar
  30. Chai, S.W., Kothare, M.V., Sircar, S.: Efficiency of nitrogen desorption from Lix zeolite by rapid oxygen purge in a pancake adsorber. AIChE J. 59, 365–368 (2013)CrossRefGoogle Scholar
  31. Chatburn, R.L., Lewarski, J.S., McCoy, R.W.: Nocturnal oxygenation using a pulsed-dose oxygen-conserving device compared to continuous flow. Respir. Care 51, 252–256 (2006)Google Scholar
  32. Chatburn, R.L., Williams, T.J.: Performance comparison of 4 portable oxygen concentrators. Respir. Care 55, 433–442 (2010)Google Scholar
  33. Chatburn, R.L., Williams, T.J.: Comparison of four under 5 lb. Portable oxygen concentrators. Strategic Dynamics, Inc. White Paper (March 7, 2013). https://inogen.com/pdf/White_Paper_Under_5_lb_POC5_03_07_13.pdf. Accessed 4 Jan 2019
  34. Chao, C.C.: Process for separating nitrogen from mixtures thereof with less polar substances. US Patent 4,859,217 (1989)Google Scholar
  35. Chao, C.C., Pontonio, S.J.: Advanced adsorbent for PSA. US Patent 6,425,940 B1 (2002)Google Scholar
  36. Coe, C.G., S.M. Kuznicki: Polyvalent ion exchanged adsorbent for air separation. US Patent 4,481,018 (1984)Google Scholar
  37. Collins, J.J.: The LUB/equilibrium section concept for fixed-bed adsorption. Chem. Eng. Prog. Symp. Ser. 63(74), 31–35 (1967)Google Scholar
  38. Collins, J.J.: Air separation by adsorption. US Patent 4,026,680 (1977)Google Scholar
  39. Cotes, J.E., Douglas-Jones, A.G., Saunders, M.J.: A 60% oxygen supply for medical use. Br. Med. J. 4, 143–146 (1969)CrossRefGoogle Scholar
  40. Cruz, P., Santos, J.C., Magalhães, F.D., Mendes, A.: Cyclic adsorption separation processes: analysis strategy and optimization procedure. Chem. Eng. Sci. 58, 3143–3158 (2003)CrossRefGoogle Scholar
  41. Dangieri, T. J., Cassidy, R.T.: RPSA process. US Patent 4,406,675 (1983)Google Scholar
  42. Deane, G.F., Taylor, B.A., Bare, R.O., Scherer, A.J.: Portable gas fractionalization system. US Patent 7,066,985 B2 (2006)Google Scholar
  43. Deane, G.F., Taylor, B.A., Li, C.M.: Portable gas fractionalization system. US Patent 7,753,996 B1 (2010)Google Scholar
  44. Deane, G.F., Taylor, B.A.: Portable gas fractionalization system. US Patent 7,922,789 B1 (2011)Google Scholar
  45. de Klerk, A.: Voidage variation in packed beds at small column to particle diameter ratio. AIChE J. 49, 2022–2029 (2003)CrossRefGoogle Scholar
  46. Dubois, A., Bodelin, P., Vigor, X.: Portable oxygen concentrator. US Patent 6,520,176 B1 (2003)Google Scholar
  47. Dunne, P.J.: The clinical impact of new long-term oxygen therapy technology. Respir. Care 54, 1100–1111 (2009)Google Scholar
  48. Earls, D.E., Long, G.N.: Multiple bed rapid pressure swing adsorption for oxygen. US Patent 4,194,891 (1980)Google Scholar
  49. Ergun. S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952)Google Scholar
  50. Federal Aviation Authority (FAA): Acceptance criteria for portable oxygen concentrators used on board aircraft; final rule. Fed. Register 81(100), 33098–33122 (2016)Google Scholar
  51. Gaffney, T.R.: Porous solids for air separation. Curr. Opin. Solid State Mater. Sci. 1, 69–75 (1996)CrossRefGoogle Scholar
  52. Gaita, R., Yates, S.F., Zhou, S.J., Chang, C.H.: Polymer-bound nitrogen adsorbent. US Patent 6,585,810 B1 (2003)Google Scholar
  53. Galbraith, S.D., McGowan, K.J., Baldauff, E.A., Galbraith, E., Walker, D.K., LaCount, R.B.: Ultra rapid cycle portable oxygen concentrator. US Patent 8,894,751 B2 (2014a)Google Scholar
  54. Galbraith, S.D., Walker, D.K., McGowan, K.J., DePetris, E.N., Galbraith, J.C.: Portable oxygen enrichment device and method of use. US Patent 8,888,902 B2 (2014b)Google Scholar
  55. Gardner Denver Thomas Web: https://www.gd-thomas.com (2019a). Accessed 11 Jan 2019
  56. Gardner Denver Thomas Web: https://www.gd-thomas.com/en/media/catalog/gdt_brochure/2250Z_WOB-L_4011_06_17_1.pdf (2019b). Accessed 11 Jan 2019
  57. Gardner Denver Thomas Web: https://www.gd-thomas.com/en/media/catalog/gdt_brochure/2220Z_WOB-L_4005_09_17_1.pdf (2019c). Accessed 11 Jan 2019
  58. German, R.M.: Particle packing characteristics. Metal Powder Industries Federation, Princeton (1999)Google Scholar
  59. Goshorn, J.C., Gross, W.E.: Volume meter for granular materials. US Patent 2,332,512 (1943)Google Scholar
  60. Gross, W.E.: Packing granular materials. Mech. Eng. 84, 469–472 (1949)Google Scholar
  61. Guerin De Montgareuil, P., Domine, D.: Process for separating a binary gaseous mixture by adsorption. US Patent 3,155,468 (1964)Google Scholar
  62. Hay, L., Vigor, X.: Adsorber and process for the separation by adsorption. US Patent 5,176,721 (1993)Google Scholar
  63. Hill, C.C., Hill, T.B.: Fluid fractionator. US Patent 5,593,478 (1997)Google Scholar
  64. Hirano, S., Kawamoto, T., Nishimura, T., Yoshimura, K.: Adsorbent for separating gases. US Patent 6,171,370 B1 (2001)Google Scholar
  65. Hirooka, E., Wheatland, J.P., Doong, S.J.: Process for producing oxygen enriched product stream. US Patent 5,122,164 (1992)Google Scholar
  66. Hu, X., Mangano, E., Friedrich, D., Ahn, H., Brandani, S.: Diffusion mechanism of CO2 in 13X zeolite beads. Adsorption 20, 121–135 (2014)CrossRefGoogle Scholar
  67. Izumi, J.: High Efficiency oxygen separation with low temperature and low pressure PSA. AIChE San Francisco, Nov. 1989Google Scholar
  68. Jacobs, S.S., Lederer, D.J., Garvey, C.M., Hernandez, C., Lindell, K.O., McLaughlin, S., Schneidman, A.M., Casaburi, R., Chang, V., Cosgrove, G.P., Devitt, L., Erickson, K.L., Ewart, G.W., Giordano. S.P., Harbaugh, M., Kallstrom, T.J., Kroner, K., Krishnan, J.A., Lamberti, J.P., Porte, P., Prieto-Centurion, V., Sherman, S.E., Sullivan, J.L., Sward, E., Swigris, J.J., Upson, D.J.: Optimizing home oxygen therapy, An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 15, 1369–1381 (2018)Google Scholar
  69. Jagger, T.W., Van Brunt, A.E., Van Brunt, N.P.: Pressure swing adsorption gas separation method and apparatus. US Patent 6,641,644 B2 (2003)Google Scholar
  70. Jagger, T.W., Van Brunt, N.P., Kivisto, J.K., Lonnes, P.B.: Portable oxygen concentrator. US Patent 7,121,276 B2 (2006)Google Scholar
  71. Jee, J.G., Lee, J.S., Lee, C.H.: Air separation by a small-scale two-bed medical O2 pressure swing adsorption. Ind. Eng. Chem. Res. 40, 3647–3658 (2001)CrossRefGoogle Scholar
  72. Jones, R.L., Keller II, G.E., Wells, R.C.: Rapid pressure swing adsorption process with high enrichment factor. US Patent 4,194,892 (1980)Google Scholar
  73. Kaplan, R.H., Dunne, S.R., McKeon, M.J.: Advances in the design of medical oxygen concentrators. AIChE Meeting, San Francisco, 1–6, (1989)Google Scholar
  74. Keefer, B.G., McLean, C.R., Babicki, M.L.: Life support oxygen concentrator. US Patent 7,250,073 B2 (2007)Google Scholar
  75. Kenyon, F.D., Puckhaber, J.W.: Flow controller. US Patent 4,784,130 (1988)Google Scholar
  76. Kikkinides, E.S., Politis, M.G.: Linking pore diffusivity with macropore structure of zeolite adsorbents. Part I: three dimensional structural representation combining scanning electron microscopy with stochastic reconstruction methods. Adsorption 20, 5–20 (2014a)CrossRefGoogle Scholar
  77. Kikkinides, E.S., Politis, M.G.: Linking pore diffusivity with macropore structure of zeolite adsorbents. Part II: simulation of pore diffusion and mercury intrusion in stochastically reconstructed zeolite adsorbents. Adsorption 20, 21–35 (2014b)CrossRefGoogle Scholar
  78. Knaebel, K.S., Kandybin, A.: Pressure swing adsorption system to purify oxygen. US Patent 5,226,933 (1993)Google Scholar
  79. Kopaygorodsky, E.M., Guliants, V.V., Krantz, W.B.: Predictive dynamic model of single-stage ultra-rapid pressure swing adsorption. AIChE J 50, 953–962 (2004)CrossRefGoogle Scholar
  80. Kratz, W.C., Sircar, S.: Pressure swing adsorption process for medical oxygen generator for home use. US Patent 4,477,264 (1984)Google Scholar
  81. Kulish, S., Swank, R.P.: Rapid cycle pressure swing adsorption oxygen concentration method and apparatus. US Patent 5,827,358 (1998)Google Scholar
  82. Kumar, R.: Vacuum swing adsorption process for oxygen production—a historical perspective. Sep. Sci. Technol. 31, 877–893 (1996)CrossRefGoogle Scholar
  83. Kuznicki, S.M., Coe, C.G., Jenkins, R.J., Butter, S.A.: Massive bodies of maximum aluminum X-type zeolite. US Patent 4,606,040, (1986)Google Scholar
  84. Langer, G., Roethe, A., Roethe, K.-P., Gelbin, D.: Heat and mass transfer in packed beds-III. Axial mass dispersion. Int. J. Heat Mass Transfer 21, 751–759 (1978)Google Scholar
  85. LaSala, K.A., Schaub, H.R.: Single bed pressure swing adsorption system and process. US Patent 5,370,728 (1994)Google Scholar
  86. Leavitt, F.W.: Air separation pressure swing adsorption process. US Patent 5,074,892 (1991)Google Scholar
  87. Leavitt, F.W.: Low temperature pressure swing adsorption with refrigeration. US Patent 5,169,413 (1992)Google Scholar
  88. Leavitt, F.W.: Lithium recovery. US Patent 5,451,383 (1995)Google Scholar
  89. Leavitt, F.W.: Thermally-driven ion-exchange process for lithium recovery. US Patent 5,681,477 (1997)Google Scholar
  90. LeBlanc, C.J., Lavallee, L.G., King, J.A., Taylor-Sussex, R.E., Woolnough, A., McKim, D.A.: A comparative study of 3 portable oxygen concentrators during a 6-minute walk test in patients with chronic lung disease. Respir Care 58, 1598–1605 (2013)CrossRefGoogle Scholar
  91. Lu, Z., Rodrigues, A.E.: Intensification of sorption processes using “large-pore” materials. Ind. Eng. Chem. Res. 32, 230–235 (1993)CrossRefGoogle Scholar
  92. Lu, Z.P., Loureiro, J.M., LeVan, M.D., Rodrigues, A.E.: Intraparticle diffusion/convection models for pressurization and blowdown of adsorption beds with langmuir isotherm. Sep. Sci. Technol. 27, 1857–1874 (1992)CrossRefGoogle Scholar
  93. Lukchis, G.M.: Adsorption systems part I: design by mass-transfer-zone concept. Chem. Eng., 111–116 (1973)Google Scholar
  94. Maring, B.J., Webley, P.A.: A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Inter. J. Greenh. Gas Control 15, 16–31 (2013)CrossRefGoogle Scholar
  95. Martin, H.: Low peclet number particle-to-fluid heat and mass transfer in packed beds. Chem. Eng. Sci. 33, 913–919 (1978)CrossRefGoogle Scholar
  96. McCombs, N.R.: Selective adsorption gas separation process. US Patent 3,738,087 (1973)Google Scholar
  97. McCombs, N.R.: Compact oxygen concentrator. US Patent 4,378,982 (1983a)Google Scholar
  98. McCombs, N.R.: Bed vessels for compact oxygen concentrator. US Patent 4,371,384 (1983b)Google Scholar
  99. McCombs, N.R.: Portable low profile dc oxygen concentrator. US Patent 4,826,510 (1989)Google Scholar
  100. McCombs, N.R.: Compact compressor. US Patent 7,491,040 B2 (2009)Google Scholar
  101. McCombs, N.R., Schlaechter, J.: Compact oxygen concentrator. US Patent 4,302,224 (1981)Google Scholar
  102. McCombs, N.R., Schlaechter, J.: Compact oxygen concentrator. US Patent 4,342,573 (1982)Google Scholar
  103. McCombs, N.R., Casey, R.E., Chimiak, M.A., Klimaszewski, A.: Portable oxygen concentrator. US Patent 6,764,534 (2004)Google Scholar
  104. McCombs, N.R., Bosinski, R., Casey, R.E., Valvo, M.R.: Mini-portable oxygen concentrator. US Patent 8,016,925 (2011)Google Scholar
  105. McCoy, R.W.: Oxygen-conserving techniques and devices. Respir Care 45, 95–103 (2000)Google Scholar
  106. McCoy, R.W.: Options for home oxygen therapy equipment: storage and metering of oxygen in the home. Respir. Care 58, 65–85 (2013)CrossRefGoogle Scholar
  107. McCoy, R.W., Diesem, R.: Performance variability identified by bench testing of selected portable oxygen concentrators. Valley Inspired Products Inc. (August 23, 2018) https://www.gcehealthcare.com/wp-content/uploads/2018/08/Zen-o-lite-and-three-other-POCs-comparison-whitepaper-2018.pdf. Accessed 15 Dec 2018
  108. Miller, G.Q.: Multiple zone adsorption process. US Patent 4,964,888 (1990)Google Scholar
  109. Milton, R.M.: Molecular sieve adsorbents. US Patent 2,882,244 (1959)Google Scholar
  110. Moran, A., Talu, O.: Role of pressure drop on rapid pressure swing adsorption performance. Ind. Eng. Chem. Res. 56, 5715–5723 (2017)CrossRefGoogle Scholar
  111. Moran, A., Patel, M., Talu, O.: Axial dispersion effects with small diameter adsorbent particles. Adsorption 24, 333–344 (2018a)CrossRefGoogle Scholar
  112. Moran, A., Talu, O.: Limitations of portable pressure swing adsorption processes for air separation. Ind. Eng. Chem. Res. 57, 11981–11987 (2018b)CrossRefGoogle Scholar
  113. Moreau, S., Barbe, C.: Process for the separation of mixtures of oxygen and of nitrogen employing an adsorbent with improved porosity. US Patent 5,672,195 (1997)Google Scholar
  114. Notaro, F., Mullhaupt, J.T., Leavitt, F.W., Ackley, M.W.: Adsorption process and system using multilayer adsorbent beds. US Patent 5,674,311 (1997)Google Scholar
  115. Nowobilski, J.J., J. S. Schneider: Particle loader. US Patent 5,324,159 (1994)Google Scholar
  116. Occhialini, J.M., Whitley, R.D., Wagner, G.P., LaBuda, M.J., Steigerwalt, C.E.: Weight-optimized portable oxygen concentrator. US Patent 7,473,299 B2 (2009)Google Scholar
  117. Park, Y., Moon, D.K., Kim, Y.H., Ahn, H., Lee, C.H.: Adsorption isotherms of CO2, CO, N2, CH4, Ar, H2 on activated carbon and zeolite LiX up to 1.0 MPa. Adsorption 20, 631–647 (2014)Google Scholar
  118. Peterson, D.: Influence of presorbed water on the sorption of nitrogen by zeolites at ambient temperatures. Zeolites 1, 105–112 (1981)CrossRefGoogle Scholar
  119. Petty, T.L.: Historical highlights of long-term oxygen therapy. Respir Care 45, 29–36 (2000)Google Scholar
  120. Plee, D.: Method for obtaining LSX zeolite bodies. US Patent 6,264,881 B1 (2001)Google Scholar
  121. Plee, D.: Agglomerated adsorbent, process for the production thereof and use thereof for the non-cryogenic separation of industrial gases. US Patent 6,652,626 B1 (2003)Google Scholar
  122. Pritchard, C.L., Simpson, G.K.: Design of an oxygen concentrator using rapid pressure-swing adsorption principle. Chem. Eng. Res. Des. 64, 467–471 (1986)Google Scholar
  123. Rama Rao, V., Farooq, S., Krantz, W.B.: Design of a two-step pulsed pressure-swing adsorption-based oxygen concentrator. AIChE J. 56, 354–370 (2010)Google Scholar
  124. Rama Rao, V., Farooq, S.: Experimental study of a pulsed pressure-swing adsorption process with very small 5A zeolite particles for oxygen enrichment. Ind. Eng. Chem. Res. 53, 13157–13170 (2014a)CrossRefGoogle Scholar
  125. Rama Rao, V., Kothare, M.V., Sircar, S.: Numerical simulation of rapid pressurization and depressurization of a zeolite column using nitrogen. Adsorption 20, 53–60 (2014b)CrossRefGoogle Scholar
  126. Rama Rao, V., Chai, S.W., Kothare, M.V., Sircar, S.: Highlights of non-equilibrium, non-isobaric, non-isothermal desorption of nitrogen from a LiX zeolite column by rapid pressure reduction and rapid purge by oxygen. Adsorption 20, 477–481 (2014c)CrossRefGoogle Scholar
  127. Rama Rao, V., Kothare, M.V., Sircar, S.: Novel design and performance of a medical oxygen concentrator using a rapid pressure swing adsorption concept. AIChE J. 60, 3330–3335 (2014d)CrossRefGoogle Scholar
  128. Rama Rao, V., Wu, C.W., Kothare, M.V., Sircar, S.: Comparative performances of two commercial samples of LiLSX zeolite for production of 90% oxygen from air by a novel rapid pressure swing adsorption system. Sep. Sci. Technol. 50, 1447–1452 (2015)CrossRefGoogle Scholar
  129. Rama Rao, V., Kothare, M.V., Sircar, S.: Performance of a medical oxygen concentrator using rapid pressure swing adsorption process: effect of feed air pressure. AIChE J. 62, 1212–1215 (2016)CrossRefGoogle Scholar
  130. Rama Rao, V., Sircar, S.: Comments on reliability of model simulation of rapid pressure swing adsorption process for high-purity product. Ind. Eng. Chem. Res. 56, 8991–8994 (2017)CrossRefGoogle Scholar
  131. Rege, S.U., Yang, R.T.: Limits for air separation by adsorption with LiX zeolite. Ind. Eng. Chem. Res. 36, 5358–5365 (1997)CrossRefGoogle Scholar
  132. Rege, S.U., Yang, R.T.: A simple parameter for selecting an adsorbent for gas separation by pressure swing adsorption. Sep. Sci. Technol. 36, 3355–3365 (2001)CrossRefGoogle Scholar
  133. Reiss, G.: Pressure swing process for the adsorptive separation of gaseous mixtures. US Patent 4,614,525 (1986)Google Scholar
  134. Reiss, G.: Status and development of oxygen generation processes on molecular sieve zeolites. Gas Sep. Purif. 8, 95–99 (1994)CrossRefGoogle Scholar
  135. Rezaei, F., Webley, P.: Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci. 64, 5182–5191 (2009)CrossRefGoogle Scholar
  136. Rota, R., Wankat, P.C.: Intensification of pressure swing adsorption processes. AIChE J. 36, 1299–1312 (1990)CrossRefGoogle Scholar
  137. Rowland, R.O.: Oxygen concentrator. US Patent 4,561,287 (1985)Google Scholar
  138. Ruthven, D.M.: Principles of adsorption and adsorption processes. Wiley, New York (1984)Google Scholar
  139. Ruthven, D.M., Farooq, S., Knaebel, K.S.: Pressure swing adsorption. VCH, New York (1994)Google Scholar
  140. Santos, J.C., Portugal, A.F., Magalhães, F.D., Mendes, A.: Simulation and optimization of small oxygen pressure swing adsorption units. Ind. Eng. Chem. Res. 43, 8328–8338 (2004)Google Scholar
  141. Santos, J.C., Portugal, A.F., Magalhães, F.D., Mendes, A.: Optimization of medical PSA units for oxygen production. Ind. Eng. Chem. Res. 45, 1085–1096 (2006)CrossRefGoogle Scholar
  142. Santos, J.C., Magalhães, F.D., Mendes, A.: Contamination of zeolites used in oxygen production by PSA: effects of water and carbon dioxide. Ind. Eng. Chem. Res. 47, 6197–6203 (2008)CrossRefGoogle Scholar
  143. Schlaechter, J.: Pressure swing cycle for the separation of oxygen from air. US Patent 4,534,346 (1985)Google Scholar
  144. Shaver, P.R., Schwartz, J., Kirson, D., O-Connor, C.: Emotion knowledge: Further exploration of a prototype approach. J. Pers. Soc. Psychol. 52, 1061–1086.Google Scholar
  145. Shin, H.S., Kim, D.H., Koo, K.K., Lee, T.S.: Performance of a two-bed pressure swing adsorption process with incomplete pressure equalization. Adsorption 6, 233–240 (2000)CrossRefGoogle Scholar
  146. Sircar, S.: Role of adsorbent heterogeneity on mixed gas adsorption. Ind. Eng. Chem. Res. 29, 1032 (1991)CrossRefGoogle Scholar
  147. Skarstrom, C.W.: Method and apparatus for fractionating gaseous mixtures by adsorption. US Patent 2,944,627 (1960)Google Scholar
  148. Skarstrom, C.W.: Oxygen concentration process. US Patent 3,237,377 (1966)Google Scholar
  149. Smolarek, J., Fassbaugh, J.H., Rogan, M.K., Schaub, H.R.: Vacuum pressure swing adsorption system and method. US Patent 6,010,555 (2000)Google Scholar
  150. Taylor, B., Hansen, P.: Gas concentrator with improved water rejection capability. US Patent 7,780,768 B2 (2010)Google Scholar
  151. Taylor, B., Burgess, P., Hansen, P., Stump, J.: Gas concentrator with removable cartridge adsorbent beds. US Patent 9,592,360 B2 (2017)Google Scholar
  152. Tarpy, S.P., Celli, B.R.: Long-term oxygen therapy. N. Engl. J. Med. 333, 710–714 (1995)CrossRefGoogle Scholar
  153. Todd, R.S., Webley, P.A.: Macropore diffusion dusty-gas coefficient for pelletised zeolites from breakthrough experiments in the O2/N2 system. Chem. Eng. Sci. 60, 4593–4608 (2005)CrossRefGoogle Scholar
  154. Todd, R.S., Webley, P.A.: Pressure drop in a packed bed under nonadsorbing and adsorbing conditions. Ind. Eng. Chem. Res. 44, 7234–7241 (2005)CrossRefGoogle Scholar
  155. Wankat, P.C.: Large-scale adsorption and chromatography, vol. 1. CRC Press, Boca Raton (1986)Google Scholar
  156. Wankat, P.C.: Intensification of sorption processes. Ind. Eng. Chem. Res. 26, 1579–1585 (1987)CrossRefGoogle Scholar
  157. Wankat, P.C.: Rate-controlled separations. Elsevier Applied Science, London (1990)CrossRefGoogle Scholar
  158. Watson, C.F., Whitley, R.D., Meyer, M.L.: Multiple zeolite adsorbent layers in oxygen separation. US Patent 5,529,610 (1996)Google Scholar
  159. Weston, K., Jaussaud, D., Chiang, R.L.: Lithium exchanged zeolite X adsorbent blends. US Patent 7,300,899 B2 (2007)Google Scholar
  160. Weston, K., Palmore, J., Jaussaud, D.: Zeolite X agglomerates with a halloysite clay binder. US Patent 10,099,201 B1 (2018)Google Scholar
  161. Whitley, R.D., Wagner, G.P., LaBuda, M.J.: Dual mode medical oxygen concentrator. US Patent 7,273,051 B2 (2007)Google Scholar
  162. Whitley, R.D., Wagner, G.P., LaBuda, M.J., Schiff, D.R., Byar, P.D., Weiman, A.M., Wyrick, S.G.: Portable medical oxygen concentrator. US Patent 7,510,601 B2 (2009)Google Scholar
  163. Wilson, S.J., Beh, C.C.K., Webley, P.A., Todd, R.S.: The effects of a readily adsorbed trace component (water) in a bulk separation psa process: the case of oxygen VSA. Ind. Eng. Chem. Res. 40, 2702–2713 (2001)CrossRefGoogle Scholar
  164. Wilson, S.J., Webley, P.A.: Cyclic steady-state axial temperature profiles in multilayer, bulk gas PSA—the case of oxygen VSA. Ind. Eng. Chem. Res. 41, 2753–2765 (2002)CrossRefGoogle Scholar
  165. Wu, C.W., Kothare, M.V., Sircar, S.: Model analysis of equilibrium adsorption isotherms of pure N2 and O2 and their binary mixtures on LiLSX zeolite. Ind. Eng. Chem. Res. 53, 12428–12434 (2014)CrossRefGoogle Scholar
  166. Wu, C.W., Kothare, M.V., Sircar, S.: Equilibrium adsorption isotherms of pure N2 and O2 and their binary mixtures on LiLSX zeolite: experimental data and thermodynamic analysis. Ind. Eng. Chem. Res. 53, 7195–7201 (2014)CrossRefGoogle Scholar
  167. Wu, C.W., Kothare, M.V., Sircar, S.: Column dynamic study of mass transfer of pure N2 and O2 into small particles of pelletized LiLSX zeolite. Ind. Eng. Chem. Res. 53, 17806–17810 (2014)CrossRefGoogle Scholar
  168. Wu, C.W., Kothare, M.V., Sircar, S.: Equilibrium isotherm and mass transfer coefficient for adsorption of pure argon on small particles of pelletized lithium-exchanged low silica X zeolite. Ind. Eng. Chem. Res. 54, 2385–2390 (2015)CrossRefGoogle Scholar
  169. Wu, C.W., Rama Rao, V., Kothare, M.V., Sircar, S.: Experimental study of a novel rapid pressure-swing adsorption based medical oxygen concentrator: effect of the adsorbent selectivity of N2 over O2. Ind. Eng. Chem. Res. 55, 4676–4681 (2016)CrossRefGoogle Scholar
  170. Yang, R.T.: Gas separation by adsorption processes. Butterworths, Boston (1987)Google Scholar
  171. Yang, R.T.: Adsorbents: fundamentals and applications. Wiley, New York (2003)CrossRefGoogle Scholar
  172. Yon, C.M., Turnock, P.H.: Multicomponent adsorption equilibria on molecular sieves. In: Lee, M.N.Y., Zwiebel, I. (eds.) Adsorption Technology, AIChE Symposium Series v67, no. 117, pp. 75-83, AIChE, New York (1971)Google Scholar
  173. Zheng, J., Barrett, P.A., Pontonio, S.J., Stephenson, N.A., Chandra, P., Kechagia, P.: High-rate and high-density gas separation adsorbents and manufacturing method. Adsorption 20, 147–156 (2014)CrossRefGoogle Scholar
  174. Zheng, X., Yao, H., Huang, Y.: Orthogonal numerical simulation on multi-factor design for rapid pressure swing adsorption. Adsorption 23, 685–697 (2017)CrossRefGoogle Scholar
  175. Zhong, G., Rankin, P.J., Ackley, M.W.: High frequency PSA process for gas separation. US Patent 7,828,878 B2 (2010)Google Scholar
  176. Zhou, S., Chatburn, R.L.: Effect of the anatomic reservoir on low-flow oxygen delivery via nasal cannula: constant flow versus pulse flow with portable oxygen concentrator. Respir Care 59, 1199–1209 (2014)CrossRefGoogle Scholar
  177. Zhu, X., Liu, Y., Yang, X., Liu, W.: Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen. Adsorption 23, 175–184 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.East AuroraUSA

Personalised recommendations