Advertisement

Adsorption

, Volume 25, Issue 8, pp 1643–1653 | Cite as

DFT study of SF6 decomposed products on Pd–TiO2: gas sensing mechanism study

  • Hao Sun
  • Yingang GuiEmail author
  • Huangli Wei
  • Yingkai Long
  • Qian Wang
  • Chao Tang
Article
  • 71 Downloads

Abstract

Detecting the species and concentrations of SF6 decomposed products is crucial for on-line monitoring the running status of SF6-insulated equipment. TiO2-based gas sensing material shows a great potential in SF6 decomposed products detection. In order to improve the sensitivity and selectivity of TiO2-based gas sensing material, Pd atom modified TiO2 (Pd–TiO2) was proposed to analyze its adsorption properties to three characteristic decomposition products of SF6: SO2, SOF2, and SO2F2. The results show that Pd–TiO2 possesses strong adsorption property to these gas molecules because of the high chemical activity of the doped Pd atom. Density of states, differential charge density, and molecular orbits are studied to analyze the gas sensing mechanism of Pd–TiO2 to the gas molecules. It is found that gas molecules adsorption raises an increase of conductivity to different extents, which can be applied to identify the species and concentrations of SF6 decomposed products under electric discharge. Therefore, Pd–TiO2 can be a promising gas sensing material using in SO2, SOF2 and SO2F2 detection with high selectivity and sensitivity. This plays an important role in the detection of SF6 decomposition gas.

Keywords

Decomposition products of SF6 Pd–TiO2 Surface adsorption DFT calculations 

Notes

Acknowledgements

This work is supported by The National Key R&D Program of China (Grant Nos. 2017YFB0902700, 2017YBF0902702), The Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2018jcyjAX0068) and The Fundamental Research Funds for the Central Universities (Grant No. SWU118030).

Compliance with ethical standards

Conflicts of interest

The authors declare no competing financial interest.

References

  1. Basiuk, V.A., Henao-Holguin, L.V.: Dispersion-corrected density functional theory calculations of meso-tetraphenylporphine–C-60 complex by using DMol3 module. J. Comput. Theor. Nanosci. 11(7), 1609–1615 (2014).  https://doi.org/10.1166/jctn.2014.3539 CrossRefGoogle Scholar
  2. Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65(16), 17 (2002).  https://doi.org/10.1103/physrevb.65.165401 CrossRefGoogle Scholar
  3. Çakır, D., Gülseren, O.: Adsorption of Pt and bimetallic PtAu clusters on the partially reduced rutile (110) TiO2 surface: a first-principles study. J. Phys. Chem. C 116(9), 5735–5746 (2012)CrossRefGoogle Scholar
  4. Cui, H., Zhang, X.X., Zhang, J., Tang, J.: Adsorption behaviour of SF6 decomposed species onto Pd4-decorated single-walled CNT: a DFT study. Mol. Phys. 116(13), 1749–1755 (2018).  https://doi.org/10.1080/00268976.2018.1451930 CrossRefGoogle Scholar
  5. Cui, H., Chen, D.C., Zhang, Y., Zhang, X.X.: Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: a first-principles theory. Sustain. Mater. Technol. 20, 8 (2019a).  https://doi.org/10.1016/j.susmat.2019.e00094 CrossRefGoogle Scholar
  6. Cui, H., Zhang, X.X., Chen, D.C., Tang, J.: Pt and Pd decorated CNT as a workable media for SOF2 sensing: a DFT study. Appl. Surf. Sci. 471, 335–341 (2019b).  https://doi.org/10.1016/j.apsusc.2018.12.016 CrossRefGoogle Scholar
  7. Cui, H., Zhang, X.X., Zhang, G.Z., Tang, J.: Pd-doped MoS2 monolayer: a promising candidate for DGA in transformer oil based on DFT method. Appl. Surf. Sci. 470, 1035–1042 (2019c).  https://doi.org/10.1016/j.apsusc.2018.11.230 CrossRefGoogle Scholar
  8. Dong, X.C., Zhang, X.X., Cui, H., Zhang, J.: A first principle simulation of competitive adsorption of SF6 decomposition components on nitrogen-doped anatase TiO2 (101) surface. Appl. Surf. Sci. 422, 331–338 (2017).  https://doi.org/10.1016/j.apsusc.2017.06.039 CrossRefGoogle Scholar
  9. Fabregat-Santiago, F., Garcia-Belmonte, G., Bisquert, J., Zaban, A., Salvador, P.: Decoupling of transport, charge storage, and interfacial charge transfer in the nanocrystalline TiO2/electrolyte system by impedance methods. J. Phys. Chem. B 106(2), 334–339 (2002)CrossRefGoogle Scholar
  10. Fehsenfeld, F.C.: Electron attachment to SF6. J. Chem. Phys. 53(5), 2000 (1970).  https://doi.org/10.1063/1.1674280 CrossRefGoogle Scholar
  11. Grimme, S.: Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25(12), 1463–1473 (2004).  https://doi.org/10.1002/jcc.20078 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006).  https://doi.org/10.1002/jcc.20495 CrossRefGoogle Scholar
  13. Guo, H., Zhao, C., Zheng, Q., Lan, Z., Prezhdo, O.V., Saidi, W.A., Zhao, J.: Superatom molecular orbital as an interfacial charge separation state. J. Phys. Chem. Lett (2018).  https://doi.org/10.1021/acs.jpclett.8b01302 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jain, A., Hautier, G., Ong, S.P., Moore, C.J., Fischer, C.C., Persson, K.A., Ceder, G.: Formation enthalpies by mixing GGA and GGA plus U calculations. Phys. Rev. B 84(4), 10 (2011).  https://doi.org/10.1103/physrevb.84.045115 CrossRefGoogle Scholar
  15. Kline, L.E., Davies, D.K., Chen, C.L., Chantry, P.J.: Dielectric-properties for SF6 and SF6 mixtures predicted from basic data. J. Appl. Phys. 50(11), 6789–6796 (1979).  https://doi.org/10.1063/1.325814 CrossRefGoogle Scholar
  16. Kolokoltsev, Y., Amelines-Sarria, O., Gromovoy, T.Y., Basiuk, V.A.: Interaction of meso-tetraphenylporphines with C-60 fullerene: comparison of several density functional theory functionals implemented in DMol3 module. J. Comput. Theor. Nanosci. 7(6), 1095–1103 (2010).  https://doi.org/10.1166/jctn.2010.1457 CrossRefGoogle Scholar
  17. Maiss, M., Brenninkmeijer, C.A.M.: Atmospheric SF6: trends, sources, and prospects. Environ. Sci. Technol. 32(20), 3077–3086 (1998).  https://doi.org/10.1021/es9802807 CrossRefGoogle Scholar
  18. Methfessel, M., Paxton, A.T.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40(6), 3616–3621 (1989).  https://doi.org/10.1103/physrevb.40.3616 CrossRefGoogle Scholar
  19. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976).  https://doi.org/10.1103/physrevb.13.5188 CrossRefGoogle Scholar
  20. Ozgonenel, O., Font, A., Ilhan, S.: IEEE: electrostatic analysis of SF6 gas insulated distribution transformer. In: 2016 National Conference on Electrical, Electronics and Biomedical Engineering. IEEE, New York (2016)Google Scholar
  21. Ozgonenel, O., Thomas, D.: Modeling and simulation of 2.5 MVA SF6-gas insulated transformer. Turk. J. Electr. Eng. Comput. Sci. 25(4), 3475–3485 (2017).  https://doi.org/10.3906/elk-1603-108 CrossRefGoogle Scholar
  22. Perdew, J.P.: Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. Phys. Rev. B 33(12), 8822–8824 (1986).  https://doi.org/10.1103/physrevb.33.8822 CrossRefGoogle Scholar
  23. Rangan, S., Ruggieri, C., Bartynski, R.A., Martinez, J.I., Flores, F., Ortega, J.: Adsorption geometry and energy level alignment at the PTCDA/TiO2 (110) interface. J. Phys. Chem. B (2017).  https://doi.org/10.1021/acs.jpcb.7b04227 CrossRefPubMedGoogle Scholar
  24. Schierbaum, K.D., Xu, W.X.: The electronic structure of intrinsic defects at TiO2 (110) surfaces: an ab initio molecular orbital study. Int. J. Quantum Chem. 57(6), 1121–1129 (1996)CrossRefGoogle Scholar
  25. Solomon, J.S., Baun, W.L.: Molecular orbital effects on the Ti LMV auger spectra of TiO and TiO2. Surf. Sci. 51(1), 228–236 (1976)CrossRefGoogle Scholar
  26. Steeve, C., Horia, M.: Enhanced adsorption energy of Au1 and O2 on the stoichiometric TiO2 (110) surface by coadsorption with other molecules. J. Chem. Phys. 128(4), 7896 (2008)Google Scholar
  27. Tang, J., Liu, F., Zhang, X.X., Meng, Q.H., Zhou, J.B.: Partial discharge recognition through an analysis of SF6 decomposition products. Part 1: decomposition characteristics of SF6 under four different partial discharges. IEEE Trans. Dielectr. Electr. Insul. 19(1), 29–36 (2012).  https://doi.org/10.1109/tdei.2012.6148499 CrossRefGoogle Scholar
  28. Tang, J., Zeng, F.P., Pan, J.Y., Zhang, X.X., Yao, Q., He, J.J., Hou, X.Z.: Correlation analysis between formation process of SF6 decomposed components and partial discharge qualities. IEEE Trans. Dielectr. Electr. Insul. 20(3), 864–875 (2013).  https://doi.org/10.1109/tdei.2013.6518956 CrossRefGoogle Scholar
  29. Wang, Y., Gui, Y.G., Ji, C., Tang, C., Zhou, Q., Li, J., Zhang, X.X.: Adsorption of SF6 decomposition components on Pt3–TiO2 (101) surface: a DFT study. Appl. Surf. Sci. 459, 242–248 (2018).  https://doi.org/10.1016/j.apsusc.2018.07.219 CrossRefGoogle Scholar
  30. Zhang, X.X., Zhang, J.B., Jia, Y.C., Xiao, P., Tang, J.: TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2. Sensors 12(3), 3302–3313 (2012).  https://doi.org/10.3390/s120303302 CrossRefPubMedGoogle Scholar
  31. Zhang, X.X., Chen, Q.C., Hu, W.H., Zhang, J.B.: A DFT study of SF6 decomposed gas adsorption on an anatase (101) surface. Appl. Surf. Sci. 286, 47–53 (2013a).  https://doi.org/10.1016/j.apsusc.2013.09.005 CrossRefGoogle Scholar
  32. Zhang, X.X., Tie, J., Zhang, J.B.: A Pt-doped TiO2 nanotube arrays sensor for detecting SF6 decomposition products. Sensors 13(11), 14764–14776 (2013b).  https://doi.org/10.3390/s131114764 CrossRefPubMedGoogle Scholar
  33. Zhang, X.X., Tie, J., Chen, Q.C., Xiao, P., Zhou, M.: Pt-doped TiO2-based sensors for detecting SF6 decomposition components. IEEE Trans. Dielectr. Electr. Insul. 22(3), 1559–1566 (2015).  https://doi.org/10.1109/tdei.2014.004256 CrossRefGoogle Scholar
  34. Zhang, X., Gui, Y., Xiao, H., Zhang, Y.: Analysis of adsorption properties of typical partial discharge gases on Ni-SWCNTs using density functional theory. Appl. Surf. Sci. 379, 47–54 (2016)CrossRefGoogle Scholar
  35. Zhang, X.X., Zhang, J., Dong, X.C., Cui, H.: A DFT calculation of fluoride-doped TiO2 nanotubes for detecting SF6 decomposition components. Sensors 17(8), 14 (2017).  https://doi.org/10.3390/s17081907 CrossRefGoogle Scholar
  36. Zhang, X.X., Zhang, J., Cui, H.: Adsorption mechanism of SF6 decomposition components onto N, F-co-doped TiO2: a DFT study. J. Fluor. Chem. 213, 18–23 (2018).  https://doi.org/10.1016/j.jfluchem.2018.05.014 CrossRefGoogle Scholar
  37. Zhao, Y., Schultz, N.E., Truhlar, D.G.: Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2(2), 364–382 (2006).  https://doi.org/10.1021/ct0502763 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Engineering and TechnologySouthwest UniversityChongqingChina
  2. 2.Electric Power Research Institute of State Grid Chongqing Electric Power CompanyChongqingChina

Personalised recommendations