Advertisement

Adsorption

, Volume 25, Issue 8, pp 1587–1594 | Cite as

Adsorption behavior of Pd-doped SnS2 monolayer upon H2 and C2H2 for dissolved gas analysis in transformer oil

  • Shouxiao Ma
  • Ying JinEmail author
  • Yang Si
Article
  • 104 Downloads

Abstract

Dissolved gas analysis (DGA) is an effective technique to evaluate the operation status of the power transformer, and to guarantee the safe operation of the power system. Using density functional theory (DFT), we proposed the application of Pd-doped SnS2 (Pd-SnS2) monolayer as a sensing material to detect H2 and C2H2 in transformer oil. The electronic and geometric structures of Pd-doping behavior on SnS2 were also analyzed to give insight into the physicochemical property of the active surface. The adsorption configuration, density of state (DOS), frontier molecular orbital theory as well as recovery property of the adsorption systems were comprehensively studied to estimate the suitability of our proposed material for sensing application. Our calculations showed that Pd-doping exerts some deformations on the SnS2 monolayer and leads to the narrowed bandgap of such surface. Meanwhile, Pd-SnS2 monolayer has stronger adsorption performance upon C2H2 compared to H2. And the desirable interaction with C2H2 makes it possible for application of a resistance-type sensor given the good electrical response and recovery property. Our calculations are meaningful to suggest novel sensing material for application in the field of electrical engineering.

Keywords

Pd-SnS2 monolayer DGA DFT method Transformer oil 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Bacaksiz, C., Cahangirov S., Rubio, A., Senger, R.T., Peeters, F.M., Sahin, H.: Bilayer SnS2: easy-tunable stacking sequence by charging and loading pressure. arXiv preprint arXiv:1602.01824, 2016
  2. Baek, D.H., Kim, J.: MoS2 gas sensor functionalized by Pd for the detection of hydrogen. Sens. Actuators B Chem. 250, 686 (2017)Google Scholar
  3. Baihua, Q., Chuze, M., Ge, J., Chaohe, X., Jing, X., Shirley, M.Y., Taihong, W., Yang, L.J.: Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26(23), 3854–3859 (2014)Google Scholar
  4. Benounis, M., Aka-Ngnui, T., Jaffrezic, N., Dutasta, J.P.: NIR and optical fiber sensor for gases detection produced by transformation oil degradation. Sens. Actuators A Phys. 141(1), 76–83 (2008)Google Scholar
  5. Bodzenta, J., Burak, B., Gacek, Z., Jakubik, W.P., Kochowski, S., Urbańczyk, M.: Thin palladium film as a sensor of hydrogen gas dissolved in transformer oil. Sens. Actuators B Chem. 87(1), 82–87 (2002)Google Scholar
  6. Chang, K., Wang, Z., Huang, G., Li, H., Chen, W., Lee, J.Y.: Few-layer SnS 2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. J. Power Sources 201, 259–266 (2012)Google Scholar
  7. Chen, W., Zhou, Q., Gao, T., Su, X.: Pd-doped SnO2-based sensor detecting characteristic fault hydrocarbon gases in transformer Oil. J. Nanomater. 2013(1), 2527–2535 (2013)Google Scholar
  8. Chen, D., Zhang, X., Tang, J., Cui, H., Li, Y.: Noble metal (Pt or Au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2: a DFT study. Appl. Phys. A Mater. Sci. Process. 124(2), 194 (2018)Google Scholar
  9. Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, K.P., Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013)PubMedGoogle Scholar
  10. Congxin, X., Yuting, P., Heng, Z., Tianxing, W., Shuyi, W., Yu, J.: The characteristics of n- and p-type dopants in SnS2 monolayer nanosheets. Phys. Chem. Chem. Phys. 16(36), 19674–19680 (2014)Google Scholar
  11. Cui, H., Zhang, X., Zhang, J., Mehmood, M.A.: Interaction of CO and CH4 Adsorption with Noble Metal (Rh, Pd, and Pt)-Decorated N3-CNTs: A first-principles study. ACS Omega 3(12), 16892–16898 (2018a)PubMedPubMedCentralGoogle Scholar
  12. Cui, H., Zhang, X., Zhang, J., Tang, J.: Adsorption behaviour of SF6 decomposed species onto Pd4-decorated single-walled CNT: a DFT study. Mol. Phys. 53, 1–7 (2018b)Google Scholar
  13. Cui, H., Xiaoxing Zhang, D., Chen, J.Tang: Adsorption mechanism of SF6 decomposed species on pyridine-like PtN3 embedded CNT: a DFT study. Appl. Surf. Sci. 447, 594 (2018c)Google Scholar
  14. Cui, H., Zhang, X., Zhang, G., Tang, J.: Pd-doped MoS2 monolayer: a promising candidate for DGA in transformer oil based on DFT method. Appl. Surf. Sci. 470, 1035–1042 (2019a)Google Scholar
  15. Cui, H., Chen, D., Zhang, Y., Zhang, X.: Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: A first-principles theory. Sustain. Mater. Technol. 20, e00094 (2019b)Google Scholar
  16. Cui, H., Zhang, G., Zhang, X., Tang, J.: Rh-doped MoSe2 as toxic gas scavenger: a first-principles study. Nanoscale Adv. 2019(1), 772–780 (2019c)Google Scholar
  17. Cui, H., Zhang, X., Chen, D., Tang, J.: Pt & Pd decorated CNT as a workable media for SOF2 sensing: a DFT study. Appl. Surf. Sci. 471, 335–341 (2019d)Google Scholar
  18. Cui, H., Liu, T., Zhang, Y., Zhang, X.: Ru-InN monolayer as a gas scavenger to guard the operation status of SF6 insulation devices: a first-principles theory. IEEE Sens. J. 19(13), 5249–5255 (2019e)Google Scholar
  19. Delley, B.: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756–7764 (2000)Google Scholar
  20. Delley, B.: Hardness conserving semilocal pseudopotentials. Phys. Rev. B 66(15), 155125 (2002)Google Scholar
  21. Ding, J., Li, X., Cao, J., Sheng, L., Yin, L., Xu, X.: New sensor for gases dissolved in transformer oil based on solid oxide fuel cell. Sens. Actuators B Chem. 202(4), 232–239 (2014)Google Scholar
  22. Fan, Y., Zhang, J., Qiu, Y., Zhu, J., Zhang, Y., Hu, G.: A DFT study of transition metal (Fe Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption. Comput. Mater. Sci. 138, 255–266 (2017)Google Scholar
  23. Giovanni, M., Poh, H.L., Ambrosi, A., Zhao, G., Sofer, Z., Šaněk, F., Khezri, B., Webster, R.D., Pumera, M.: Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis. Nanoscale 4(16), 5002–5008 (2012)PubMedGoogle Scholar
  24. Hennig, R.G.: Theoretical perspective of photocatalytic properties of single-layer SnS2. Phys. Rev. B 88(11), 3925–3938 (2013)Google Scholar
  25. Hoa, N.D., Van Quy, N., Cho, Y., Kim, D.: Porous single-wall carbon nanotube films formed by in situ arc-discharge deposition for gas sensors application. Sens. Actuators B 135(2), 656–663 (2009)Google Scholar
  26. Jia, T.-T., Lu, C.-H., Ding, K.-N., Zhang, Y.-F., Chen, W.-K.: Oxidation of Pdn (n = 1–5) clusters on single vacancy graphene: a first-principles study. Comput. Theor. Chem. 1020, 91–99 (2013)Google Scholar
  27. Jiao, X., Li, X., Jin, X., Sun, Y., Xu, J., Liang, L., Ju, H., Zhu, J., Pan, Y., Yan, W.: Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 139(49), jacs.7b10287 (2017)Google Scholar
  28. Ju, W., Li, T., Su, X., Li, H., Li, X., Ma, D.: Au cluster adsorption on perfect and defective MoS2 monolayers: structural and electronic properties. Phys. Chem. Chem. Phys. 19, 20735 (2017)PubMedGoogle Scholar
  29. Ma, D., Ju, W., Li, T., Zhang, X., He, C., Ma, B., Lu, Z., Yang, Z.: The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: a first-principles study. Appl. Surf. Sci. 383, 98–105 (2016a)Google Scholar
  30. Ma, D., Wang, Q., Li, T., He, C., Ma, B., Tang, Y., Lu, Z., Yang, Z.: Repairing sulfur vacancies in the MoS2 monolayer by using CO, NO and NO2 molecules. J. Mater. Chem. C 4(29), 7093–7101 (2016b)Google Scholar
  31. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004)Google Scholar
  32. Peng, S., Cho, K., Qi, P., Dai, H.: Ab initio study of CNT NO2 gas sensor. Chem. Phys. Lett. 387(4), 271–276 (2004)Google Scholar
  33. Pyykkö, P., Atsumi, M.: Molecular single-bond covalent radii for elements 1–118. Chemistry 15(1), 186–197 (2009)PubMedGoogle Scholar
  34. Rad, A.S., Shabestari, S.S., Mohseni, S., Aghouzi, S.A.: Study on the adsorption properties of O3, SO2, and SO3 on B-doped graphene using DFT calculations. J. Solid State Chem. 237, 204–210 (2016)Google Scholar
  35. Sharma, A., Khan, M.S., Husain, M., Khan, M.S., Srivastava, A.: Sensing of CO and NO on Cu-doped MoS2 monolayer based single electron transistor: a first principles study. IEEE Sens. J. 18(7), 2853–2860 (2018)Google Scholar
  36. Shokri, A., Salami, N.: Gas sensor based on MoS2 monolayer. Sens. Actuators B Chem. 236, 378–385 (2016)Google Scholar
  37. Singh, S., Bandyopadhyay, M.N.: Dissolved gas analysis technique for incipient fault diagnosis in power transformers: a bibliographic survey. IEEE Electr. Insulat. Mag. 26(6), 41–46 (2010)Google Scholar
  38. Song, H.S., Li, S.L., Gao, L., Xu, Y., Ueno, K., Tang, J., Cheng, Y.B., Tsukagoshi, K.: High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. Nanoscale 5(20), 9666–9670 (2013)PubMedGoogle Scholar
  39. Tkatchenko, A., Jr, Di Stasio Ra, Head-Gordon, M., Scheffler, M.: Dispersion-corrected Møller-Plesset second-order perturbation theory. J. Chem. Phys. 131(9), 171 (2009)Google Scholar
  40. Uddin, A.I., Yaqoob, U., Chung, G.S.: Dissolved hydrogen gas analysis in transformer oil using Pd catalyst decorated on ZnO nanorod array. Sens. Actuators B Chem. 226, 90–95 (2016)Google Scholar
  41. Wei, H., Gui, Y., Kang, J., Wang, W., Tang, C.: A DFT study on the adsorption of H2S and SO2 on Ni doped MoS2 monolayer. Nanomaterials 8(9), 646 (2018)PubMedCentralGoogle Scholar
  42. Wu, P., Yin, N., Li, P., Cheng, W., Huang, M.: The adsorption and diffusion behavior of noble metal adatoms (Pd, Pt, Cu, Ag and Au) on a MoS2 monolayer: a first-principles study. Phys. Chem. Chem. Phys. 19(31), 20713 (2017)PubMedGoogle Scholar
  43. Yan, F., Gou, G., Wang, X., Yang, C., Qiang, W., Jia, S., Si, X., Han, H., Yang, J., Dai, G.: High-performance photodetectors based on CVD-grown high-quality SnS 2 nanosheets. Appl. Phys. A 123(4), 299 (2017)Google Scholar
  44. Yang, F., Jung, D., Penner, R.M.: Trace detection of dissolved hydrogen gas in oil using a palladium nanowire array. Anal. Chem. 83(24), 9472–9477 (2011)PubMedGoogle Scholar
  45. Yang, A.J., Wang, D.W., Wang, X.H., Chu, J.F., Lv, P.L., Liu, Y., Rong, M.Z.: Phosphorene: a promising candidate for highly sensitive and selective SF6 decomposition gas sensors. IEEE Electron. Device Lett. 38(7), 963–966 (2017a)Google Scholar
  46. Yang, A.J., Wang, D.W., Wang, X.H., Chu, J.F., Lv, P.L., Liu, Y., Rong, M.Z.: Phosphorene: a promising candidate for highly sensitive and selective SF6 decomposition gas sensors. IEEE Electron Device Lett. 38(7), 963–966 (2017b)Google Scholar
  47. Ye, G., Gong, Y., Lei, S., He, Y., Bo, L., Xiang, Z., Jin, Z., Dong, L., Lou, J., Vajtai, R.: Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. Nano Res. 10(10), 2394 (2017)Google Scholar
  48. Yuwen, L., Xu, F., Xue, B., Luo, Z., Zhang, Q., Bao, B., Su, S., Weng, L., Huang, W., Wang, L.: General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. Nanoscale 6(11), 5762–5769 (2014)PubMedGoogle Scholar
  49. Zhang, Y.H., Chen, Y.B., Zhou, K.G., Liu, C.H., Zeng, J., Zhang, H.L., Peng, Y.: Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20(18), 185504 (2009a)PubMedGoogle Scholar
  50. Zhang, Y.H., Chen, Y.B., Zhou, K.G., Liu, C.H., Zeng, J., Zhang, H.L., Peng, Y.: Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20(18), 185504 (2009b)PubMedGoogle Scholar
  51. Zhang, Y., Sun, X., Tan, S., Liu, T., Cui, H.: Adsorption characteristic of Rh-doped MoSe2 monolayer towards H2 and C2H2 for DGA in transformer oil based on DFT method. Appl. Surf. Sci. 487, 930–937 (2019)Google Scholar
  52. Zhao, B., Li, C.Y., Liu, L.L., Zhou, B., Zhang, Q.K., Chen, Z.Q., Tang, Z.: Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: a first-principles study. Appl. Surf. Sci. 382, 280–287 (2016)Google Scholar
  53. Zhou, J., Lin, J., Huang, X., Zhou, Y., Chen, Y., Xia, J., Wang, H., Xie, Y., Yu, H., Lei, J.: A library of atomically thin metal chalcogenides. Nature 556(7701), 355–359 (2018)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Water Resources and Electric PowerQinghai UniversityXiningChina
  2. 2.Institute of Finance and EconomicsQinghai UniversityXiningChina
  3. 3.Qinghai Key Lab of Efficient Utilization of Clean EnergyQinghai UniversityXiningChina

Personalised recommendations