Advertisement

Adsorption

pp 1–9 | Cite as

A facile approach to the fabrication of MgO@Y composite for CO2 capture

  • Fei Gao
  • Shougui Wang
  • Guanghui Chen
  • Jihai Duan
  • Jipeng Dong
  • Weiwen WangEmail author
Article

Abstract

Zeolite Y supported MgO (denoted as MgO@Y) composites have been successfully prepared using Mg(NO3)2 as precursor via a facile solid-state heat dispersion approach. The samples are characterized by X-ray diffraction and N2 adsorption/desorption, and investigated for CO2 adsorption performance including adsorption capacity, adsorption selectivity and stability. The results reveal that MgO can be highly dispersed on the surfaces of zeolite Y support after the activation at high temperatures, and the monolayer dispersion capacity of MgO on zeolite Y support is 3 mmol/g zeolite Y. The resulting MgO(3.0)@Y adsorbent with the magnesium loadings of 3 mmol/g zeolite Y displays a high CO2 adsorption capacity of 2.78 mmol/g at 500 kPa, which is about 28% higher than that of zeolite Y support. Moreover, the MgO(3.0)@Y adsorbent displays a high CO2/N2 adsorption selectivity of 32 and a excellent cyclic stability. Its good performance as well as its facile preparation process make it attractive candidate for the adsorption of CO2 in flue gas vents. In addition, the isosteric heat of CO2 adsorption on the MgO(3.0)@Y sample was calculated from the Clausius–Clapeyron equation, and the values the isosteric heats of adsorption lie in the range of 27.8–20.0 kJ/mol.

Keywords

MgO@Y adsorbent CO2 Solid-state heat dispersion Selectivity Stability 

Notes

Acknowledgements

This work has been supported by Natural Science Foundation of Shandong Province (No. ZR2018BB071).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This work does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Akten, E.D., Siriwardane, R., Sholl, D.S.: Monte carlo simulation of single- and binary-component adsorption of CO2, N2, and H2 in Zeolite Na-4A. Energ. Fuel. 17, 977–983 (2003)CrossRefGoogle Scholar
  2. Avijegon, G., Xiao, G., Li, G., May, E.F.: Binary and ternary adsorption equilibria for CO2/CH4/N2 mixtures on Zeolite 13 × beads from 273 to 333 K and pressures to 900 kPa. Adsorption 24(4), 381–392 (2018)CrossRefGoogle Scholar
  3. Bahamon, D., Vega, L.F.: Systematic evaluation of materials for post-combustion CO2 capture in a temperature swing adsorption process. Chem. Eng. J. 284, 438–447 (2016)CrossRefGoogle Scholar
  4. Belmabkhout, Y., Sayari, A.: Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 2: adsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures. Chem. Eng. Sci. 64, 3729–3735 (2009)CrossRefGoogle Scholar
  5. Billemont, P., Heymans, N., Normand, P., Weireld, G.D.: IAST predictions vs co-adsorption measurements for CO2 capture and separation on MIL-100 (Fe). Adsorption 23(2–3), 225–237 (2017)CrossRefGoogle Scholar
  6. Carruthers, J.D., Petruska, M.A., Sturm, E.A., Wilson, S.M.: Molecular sieve carbons for CO2 capture. Microporous Mesoporous Mater. 154, 62–67 (2012)CrossRefGoogle Scholar
  7. Chen, Y., Xie, C., Li, Y., Song, C., Bolin, T.B.: Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study. Phys. Chem. Chem. Phys. 12(21), 5707–5711 (2010)CrossRefGoogle Scholar
  8. Chen, C., Kim, J., Ahn, W.S.: CO2 capture by amine-functionalized nanoporous materials: a review. Korean J. Chem. Eng. 31(11), 1919–1934 (2014)CrossRefGoogle Scholar
  9. Choma, J., Stachurska, K., Marszewski, M., Jaroniec, M.: Equilibrium isotherms and isosteric heat for CO2 adsorption on nanoporous carbons from polymers. Adsorption 22(4), 581–588 (2016)CrossRefGoogle Scholar
  10. Chu, S.: Carbon capture and sequestration. Science 325(5948), 1599 (2009)CrossRefGoogle Scholar
  11. Dietzel, P.D.C., Besikiotis, V., Blom, R.: Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J. Mater. Chem. 19, 7362–7370 (2009)CrossRefGoogle Scholar
  12. Dong, W., Chen, X., Yu, F., Wu, Y.: Na2CO3/MgO/Al2O3 solid sorbents for low-temperature CO2 capture. Energy Fuel. 29(2), 968–973 (2015)CrossRefGoogle Scholar
  13. Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H.: Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Con. 2(1), 9–20 (2008)CrossRefGoogle Scholar
  14. Freundlich, H.M.F.: Over the adsorption in solution. J. Phys. Chem. 57, 385–471 (1906)Google Scholar
  15. Gao, F., Wang, Y., Wang, X., Wang, S.: Selective CO adsorbent CuCl/AC prepared using CuCl2 as a precursor by a facile method. RSC Adv. 6(41), 34439–34446 (2016a)CrossRefGoogle Scholar
  16. Gao, F., Wang, Y., Wang, S.: Selective adsorption of CO on CuCl/Y adsorbent prepared using CuCl2 as precursor: equilibrium and thermodynamics. Chem. Eng. J. 290, 418–427 (2016b)CrossRefGoogle Scholar
  17. Gao, F., Wang, Y., Wang, X., Wang, S.: Ethylene/ethane separation by Cu/AC adsorbent prepared using CuCl2 as a precursor. Adsorption 22(7), 1013–1022 (2016c)CrossRefGoogle Scholar
  18. Han, S.J., Bang, Y., Lee, H., Lee, K., Song, I.K., Seo, J.G.: Synthesis of a dual-templated MgO-Al2O3 adsorbent using block copolymer and ionic liquid for CO2 capture. Chem. Eng. J. 270, 411–417 (2015)CrossRefGoogle Scholar
  19. Hasana, M.M.F., First, E.L., Boukouvala, F., Flouda, C.A.: A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. Comput. Chem. Eng. 81, 2–21 (2015)CrossRefGoogle Scholar
  20. Hefti, M., Marx, D., Joss, L., Mazzotti, M.: Adsorption equilibrium of binary mixtures of carbon dioxide and nitrogen on zeolites ZSM-5 and 13X. Microporous Mesoporous Mater. 215, 215–222 (2015)CrossRefGoogle Scholar
  21. Herm, Z.R., Swisher, J.A., Smit, B., Krishna, R., Long, J.R.: Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J. Am. Chem. Soc. 133, 5664–5667 (2011)CrossRefGoogle Scholar
  22. Hiremath, V., Shavi, R., Seo, J.G.: Controlled oxidation state of Ti in MgO-TiO2 composite for CO2 capture. Chem. Eng. J. 308, 177–183 (2017)CrossRefGoogle Scholar
  23. Huang, Y., Tao, Y., He, L., Duan, Y., Xiao, J., Li, Z.: Preparation of CuCl@AC with high CO adsorption capacity and selectivity from CO/N2 binary mixture. Adsorption 21(5), 373–381 (2015)CrossRefGoogle Scholar
  24. Iruretagoyena, D., Huang, X., Shaffer, M.S.P., Chadwick, D.: Influence of alkali metals (Na, K, and Cs) on CO2 adsorption by layered double oxides supported on graphene oxide. Ind. Eng. Chem. Res. 54(46), 11610–11618 (2015)CrossRefGoogle Scholar
  25. Jiao, X., Li, L., Zhao, N., Xiao, F., Wei, W.: Synthesis and low-temperature CO2 capture properties of a novel Mg-Zr solid sorbent. Energy Fuel. 27(9), 5407–5415 (2013)CrossRefGoogle Scholar
  26. Kapoor, A., Ritter, J.A., Yang, R.T.: An extended langmuir model for adsorption of gas mixtures on heterogeneous surfaces. Langmuir 6(3), 660–664 (1990)CrossRefGoogle Scholar
  27. Koerner, B., Klopatek, J.: Anthropogenic and natural CO2 emission sources in an arid urban environment. Environ. Pollut. 116, S45–S51 (2002)CrossRefGoogle Scholar
  28. Kodasma, R., Fermoso, J., Sanna, A.: Li-LSX-zeolite evaluation for post-combustion CO2 capture. Chem. Eng. J. 358, 1351–1362 (2019)CrossRefGoogle Scholar
  29. Kim, K., Han, J.W., Lee, K.S., Lee, W.B.: Promoting alkali and alkaline-earth metals on MgO for enhancing CO2 capture by first-principles calculations. Phys. Chem. Chem. Phys: PCCP 16(45), 24818–24823 (2014)CrossRefGoogle Scholar
  30. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)CrossRefGoogle Scholar
  31. Lee, S.Y., Park, S.J.: A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 23, 1–11 (2015)CrossRefGoogle Scholar
  32. Li, P., Tezel, F.H.: Pure and binary adsorption equilibria of carbon dioxide and nitrogen on silicalite. J. Chem. Eng. Data 53, 2479–2487 (2008)CrossRefGoogle Scholar
  33. Li, B., Duan, Y., Luebke, D., Morreale, B.: Advances in CO2 capture technology: a patent review. Appl. Energy 102, 1439–1447 (2013a)CrossRefGoogle Scholar
  34. Li, Y.Y., Han, K.K., Lin, W.G., Wan, M.M., Wang, Y., Zhu, J.H.: Fabrication of a new MgO/C sorbent for CO2 capture at elevated temperature. J. Mater. Chem. A 1(41), 12919–12925 (2013b)CrossRefGoogle Scholar
  35. Li, D., Tian, Y., Li, L., Li, J., Zhang, H.: Production of highly microporous carbons with large CO2 uptakes at atmospheric pressure by KOH activation of peanut shell char. J. Porous Mater. 22, 1581–1588 (2015)CrossRefGoogle Scholar
  36. Lin, Y., Yan, Q., Kong, C., Chen, L.: Polyethyleneimine incorporated metal-Organic frameworks adsorbent for highly selective CO2 capture. Sci. Rep. 3, 1859–1865 (2013)CrossRefGoogle Scholar
  37. Ling, Z., Liu, J., Wang, Q., Lin, W., Fang, X., Zhang, Z.: MgCl2·6H2O-Mg(NO3)2·6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity. Sol. Energy Mater. Sol. C 172, 195–201 (2017)CrossRefGoogle Scholar
  38. Liu, S., Zhang, X., Li, J., Zhao, N., Wei, W., Sun, Y.: Preparation and application of stabilized mesoporous MgO-ZrO2 solid base. Catal. Commun. 9(7), 1527–1532 (2008)CrossRefGoogle Scholar
  39. Luebke, R., Eubank, J.F., Cairns, A.J., Belmabkhout, Y., Wojtas, L., Eddaoudi, M.: The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. Chem. Commun. 48, 1455–1457 (2012)CrossRefGoogle Scholar
  40. Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965)CrossRefGoogle Scholar
  41. Nikolaidis, G.N., Kikkinides, E.S., Georgiadis, M.C.: A model-based approach for the evaluation of new zeolite 13X-based adsorbents for the efficient post-combustion CO2 capture using P/VSA processes. Chem. Eng. Res. Des. 131, 362–374 (2018)CrossRefGoogle Scholar
  42. Olajire, A.A.: CO2 capture and separation technologies for end-of-pipe applications: a review. Energy 35(6), 2610–2628 (2010)CrossRefGoogle Scholar
  43. Pires, J., de Carvalho, M.B., Ramoa Ribeiro, F., Derouane, E.G.: Carbon dioxide in Y and ZSM-20 zeolites: adsorption and infrared studies. J. Mol. Catal. 85, 295–303 (1993)CrossRefGoogle Scholar
  44. Ramli, N.A.S., Amin, N.A.S.: Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: characterization and catalytic performance. Appl. Catal. B 163, 487–498 (2015)CrossRefGoogle Scholar
  45. Rao, M.B., Sirca, S.: Thermodynamic consistency for binary gas adsorption equilibria. Langmuir 15, 7258–7267 (1999)CrossRefGoogle Scholar
  46. Rao, A.B., Rubin, E.S.: A technical, economic and environmental assessment of amine based CO2 capture technology for power plant greenhouse gas control. Environ. Sci. Technol. 36(20), 4467–4475 (2002)CrossRefGoogle Scholar
  47. Razavi, S.S., Hashemianzadeh, S.M., Karimi, H.: Modeling the adsorptive selectivity of carbon nanotubes for effective separation of CO2/N2 mixtures. J. Mol. Model. 17, 1163–1172 (2011)CrossRefGoogle Scholar
  48. Regufe, M.J., Ferreira, A.F.P., Loureiro, J.M., Shi, Y., Rodrigues, A., Ribeiro, A.M.: New hybrid composite honeycomb monolith with 13 × zeolite and activated carbon for CO2 capture. Adsorption 24(3), 249–265 (2018)CrossRefGoogle Scholar
  49. Rocha, L.A.M., Anne Andreassen, K., Grande, C.A.: Separation of CO2/CH4 using carbon molecular sieve (CMS) at low and high pressure. Chem. Eng. Sci. 164, 148–157 (2017)CrossRefGoogle Scholar
  50. Sevilla, M., Fuertes, A.B.: Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ. Sci. 4, 1765–1771 (2011)CrossRefGoogle Scholar
  51. Shahkarami, S., Dalai, A.K., Soltan, J.: Enhanced CO2 adsorption using MgO-impregnated activated carbon: Impact of preparation techniques. Ind. Eng. Chem. Res. 55(20), 5955–5956 (2016)CrossRefGoogle Scholar
  52. Shao, W., Zhang, L., Li, L., Lee, R.L.: Adsorption of CO2 and N2 on synthesized NaY zeolite at high temperatures. Adsorption 15, 497–505 (2009)CrossRefGoogle Scholar
  53. Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16, 490–495 (1948)CrossRefGoogle Scholar
  54. Song, G., Zhu, X., Chen, R., Liao, Q., Ding, Y.D., Chen, L.: An investigation of CO2 adsorption kinetics on porous magnesium oxide. Chem. Eng. J. 283, 175–183 (2016)CrossRefGoogle Scholar
  55. Song, C., Liu, Q., Deng, S., Li, H., Kitamura, Y.: Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges. Renew. Sust. Energ. Rev. 101, 265–278 (2019)CrossRefGoogle Scholar
  56. Toth, J.: State equations of the solid gas interface layer. Acta Chem. Acad. Hung. 69, 311–317 (1971)Google Scholar
  57. Wang, Q., Luo, J.Z., Zhou, Z.Y., Borgna, A.: CO2 capture by solid adsorbents and their applications: current status and new trends. Energ. Environ. Sci. 4(1), 42–55 (2011)CrossRefGoogle Scholar
  58. Wang, C., Li, L., Tang, S., Zhao, X.: Enhanced uptake and selectivity of CO2 Adsorption in a hydrostable metal-organic frameworks via incorporating methylol and methyl groups. ACS Appl. Mater. Interfaces 6, 16932–16940 (2014)CrossRefGoogle Scholar
  59. Wilkins, N.S., Rajendran, A.: Measurement of competitive CO2 and N2 adsorption on Zeolite 13X for post-combustion CO2 capture. Adsorption 25, 115–133 (2019)CrossRefGoogle Scholar
  60. Wu, Y., Lv, Z., Zhou, X., Peng, J., Tang, Y., Li, Z.: Tuning secondary building unit of Cu-BTC to simultaneously enhance its CO2 selective adsorption and stability under moisture. Chem. Eng. J. 355, 815–821 (2019)CrossRefGoogle Scholar
  61. Xiang, S., He, Y., Zhang, Z., Wu, H., Zhou, W., Krishna, R., Chen, B.: Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 3, 954–962 (2012)CrossRefGoogle Scholar
  62. Yang, S.T., Kim, J., Ahn, W.S.: CO2 adsorption over ion-exchanged zeolite beta with alkali and alkaline earth metal ions. Microporous Mesoporous Mater. 135(1–3), 90–94 (2010)CrossRefGoogle Scholar
  63. Zhao, B., Ma, L., Shi, H., Liu, K., Zhang, J.: Calcium precursor from stirring processes at room temperature for controllable preparation of nano-structure CaO sorbents for high temperature CO2 adsorption. J. CO2 Util. 25, 315–322 (2018)CrossRefGoogle Scholar
  64. Zukal, A., Pastva, J., Čejka, J.: MgO-modified mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption. Microporous Mesoporous Mater. 167, 44–50 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fei Gao
    • 1
  • Shougui Wang
    • 2
  • Guanghui Chen
    • 1
  • Jihai Duan
    • 1
  • Jipeng Dong
    • 1
  • Weiwen Wang
    • 1
    Email author
  1. 1.College of Chemical EngineeringQingdao University of Science and TechnologyQingdaoChina
  2. 2.Fundamental Chemistry Experiment Center (Gaomi)Qingdao University of Science and TechnologyGaomiChina

Personalised recommendations