, Volume 25, Issue 8, pp 1625–1632 | Cite as

Adsorption and decomposition of SF6 molecule on α-Al2O3 (0 0 0 1) surface: a DFT study

  • Zhaolun Cui
  • Xiaoxing ZhangEmail author
  • Yi Li
  • Dachang Chen


Based on the first principle, the interaction process between SF6 molecule and α-Al2O3 (0 0 0 1) surface was calculated. The results show that, under five adsorption sites, SF6 can form a relatively stable chemical adsorption at the O-3 site on α-Al2O3 (0 0 0 1) surface, while the other sites mainly showed physical adsorption processes. At O-3 site, 0.664 e electrons were transferred from α-Al2O3 to the SF6 molecule, and DOS analysis indicates that there was a strong electron orbital interaction between S and F atoms in SF6 and Al and O atoms on α-Al2O3 surface. After the adsorption, the molecule structure of SF6 changed significantly, the S–F bonds were elongated and partially broken, and the whole SF6 showed a tendency to be close to the surface of α-Al2O3. The energy barrier for SF6 decomposition was 0.147 eV. The results show the adsorption and decomposition process of SF6 molecules on the surface of α-Al2O3, which proves that α-Al2O3 has certain catalytic properties. The results indicate a simulation support for the efficient and harmless treatment of SF6 gas with Al2O3 catalysts.


SF6 α-Al2O3 (0 0 0 1) Adsorption DFT study 



This study is funded by National Natural Science Foundation of China (NSFC, Funding Number is 51777144) and China State Grid Corporation Science and Technology Project (SGHB0000KXJS 1800554).


  1. Chen, H.L., Lee, H.M., Li, C.C., et al.: Influence of nonthermal plasma reactor type on CF4 and SF6 abatements. IEEE Trans. Plasma Sci. 36(2), 509–515 (2008)CrossRefGoogle Scholar
  2. Chen, D., Zhang, X., Tang, J., et al.: Density functional theory study of small Ag cluster adsorbed on graphyne. Appl. Surf. Sci. 465, 93–102 (2019)CrossRefGoogle Scholar
  3. Chiang, H.N., Nachimuthu, S., Cheng, Y.C., et al.: A DFT study of ethanol adsorption and decomposition on α-Al2O3(0 0 0 1) surface. Appl. Surf. Sci. 363, 636–643 (2016)CrossRefGoogle Scholar
  4. Cui, H., Zhang, X., Zhang, G., et al.: Pd-doped MoS2 monolayer: a promising candidate for DGA in transformer oil based on DFT method. Appl. Surf. Sci. 470, 1035–1042 (2019)CrossRefGoogle Scholar
  5. Delley, B.: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508–517 (1990)CrossRefGoogle Scholar
  6. Delley, B.: Hardness conserving semilocal pseudopotentials. Phys. Rev. B 66(15), 155125 (2002)CrossRefGoogle Scholar
  7. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)CrossRefGoogle Scholar
  8. Holze, P., Horn, B., Limberg, C., et al.: The activation of sulfur hexafluoride at highly reduced low-coordinate nickel dinitrogen complexes. Angew. Chem. 53(10), 2750–2753 (2014)CrossRefGoogle Scholar
  9. Huang, L., Gu, D., Yang, L., et al.: Photoreductive degradation of sulfur hexafluoride in the presence of styrene. J. Environ. Sci. 20(2), 183–188 (2008)CrossRefGoogle Scholar
  10. Kashiwagi, D., Takai, A., Takubo, T., et al.: Metal phosphate catalysts effective for degradation of sulfur hexafluoride. Ind. Eng. Chem. Res. 48(2), 632–640 (2009)CrossRefGoogle Scholar
  11. Lee, H.M., Chang, M.B., Wu, K.Y.: Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas. J. Air Waste Manag. Assoc. 54(8), 960–970 (2004)CrossRefGoogle Scholar
  12. Li, Y., Zhang, X., Xiao, S., et al.: Decomposition properties of C4F7N/N2 gas mixture: an environmentally friendly gas to replace SF6. Ind. Eng. Chem. Res. 57, 5173–5182 (2018)CrossRefGoogle Scholar
  13. Li, Y., Zhang, X., Tian, S., et al.: Insight into the decomposition mechanism of C6F12O-CO2 gas mixture. Chem. Eng. J. 360, 929–940 (2019)CrossRefGoogle Scholar
  14. Maeda, T., Yoshimoto, M., Ohnishi, T., et al.: Orientation-defined molecular layer epitaxy of α-Al2O3, thin films. J. Cryst. Growth 177(1–2), 95–101 (1997)CrossRefGoogle Scholar
  15. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)CrossRefGoogle Scholar
  16. Rabie, M., Franck, C.M.: An assessment of eco-friendly gases for electrical insulation to replace the most potent industrial greenhouse Gas SF6. Environ. Sci. Technol. 52(2), 369–380 (2017)CrossRefGoogle Scholar
  17. Reilly, J., Prinn, R., Harnisch, J., et al.: Multi-gas assessment of the Kyoto protocol. Nature 401(6753), 549–555 (1999)CrossRefGoogle Scholar
  18. Savita, V., Christophe, L., Nathalie, D.G., et al.: Abatement of VOCs using packed bed non-thermal plasma reactors: a review. Catalysts 7(12), 113 (2017)CrossRefGoogle Scholar
  19. Shih, M., Lee, W.J., Chen, C.Y.: Decomposition of SF6 and H2S mixture in radio frequency plasma environment. Ind. Eng. Chem. Res. 42(13), 2906–2912 (2003)CrossRefGoogle Scholar
  20. Sun, M.Y., Dong-Hong, K.: Decomposition of sulfur hexafluoride by using a nonthermal plasma-assisted catalytic process. J. Korean Phys. Soc. 59(61), 3437 (2011)CrossRefGoogle Scholar
  21. Thevenet, F., Sivachandiran, L., Guaitella, O., et al.: Plasma–catalyst coupling for volatile organic compound removal and indoor air treatment: a review. J. Phys. D 47(22), 224011 (2014)CrossRefGoogle Scholar
  22. Tsai, C.H., Shao, J.M.: Formation of fluorine for abating sulfur hexafluoride in an atmospheric-pressure plasma environment. J. Hazard. Mater. 157(1), 201–206 (2008)CrossRefGoogle Scholar
  23. Ullah, R., Rashid, A., Rashid, A., Khan, F., Ali, A.: Dielectric characteristic of dichlorodifluoromethane (R12) gas and mixture with N2/air as an alternative to SF6 gas. High Volt. 2(3), 205–210 (2017)CrossRefGoogle Scholar
  24. Xiao, H., Zhang, X., Hu, X., et al.: Experimental and simulation analysis on by-products of treatment of SF6 using dielectric barrier discharge. IEEE Trans. Dielectr. Electr. Insul. 24(3), 1617–1624 (2017)CrossRefGoogle Scholar
  25. Yang, Y., Evans, J., Rodriguez, J.A., et al.: Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu (111), Cu clusters, and Cu/ZnO (0001 [combining macron]). Phys. Chem. Chem. Phys. 12(33), 9909–9917 (2010)CrossRefGoogle Scholar
  26. Zámostná, L., Braun, T.: Catalytic degradation of sulfur hexafluoride by rhodium complexes. Angew. Chem. 54(36), 10652–10656 (2015)CrossRefGoogle Scholar
  27. Zhang, J., Zhou, J.Z., Liu, Q., et al.: Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge. Environ. Sci. Technol. 47(12), 6493–6499 (2013a)CrossRefGoogle Scholar
  28. Zhang, M., Chen, J., Yu, Y., et al.: DFT study on the structure of Ni/α-Al2O3 catalysts. Appl. Surf. Sci. 287, 97–107 (2013b)CrossRefGoogle Scholar
  29. Zhang, X., Xiao, H., Tang, J., et al.: Recent advances in decomposition of the most potent greenhouse gas SF6. Crit. Rev. Environ. Sci. Technol. 47(18), 1763–1782 (2017a)CrossRefGoogle Scholar
  30. Zhang, B., Sun, F., Zhou, Q.L., et al.: First-principles investigation on stability and mobility of hydrogen in α-Al2O3 (0001)/α-Cr2O3 (0001) interface. Fusion Eng. Des. 125, 577–581 (2017b)CrossRefGoogle Scholar
  31. Zhang, X., Cui, Z., et al.: Abatement of SF6 in the presence of NH3 by dielectric barrier discharge plasma. J. Hazard. Mater. 360, 341–348 (2018a)CrossRefGoogle Scholar
  32. Zhang, X., Cui, Z., et al.: Study on degradation of SF6 in the presence of H2O and O2 using dielectric barrier discharge. IEEE Access 6, 58154–58160 (2018b)CrossRefGoogle Scholar
  33. Zhang, X., Cui, Z., et al.: Theoretical study of the interaction of SF6 molecule on Ag(1 1 1) surfaces: A DFT study. Appl. Surf. Sci. 457, 745–751 (2018c)CrossRefGoogle Scholar
  34. Zhang, Y., Li, Y., Cui, Z., et al.: Simulation and experiment on the catalytic degradation of high-concentration SF6 on TiO2 surface under UV light. AIP Adv. 8(5), 055215 (2018d)CrossRefGoogle Scholar
  35. Zhou, S.Q., Ju, X.H., Zhao, F.Q., et al.: Periodic DFT study of adsorption of nitroamine molecule on α-Al2O3(001) surface. Appl. Surface Sci. 258(19), 7334–7342 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical EngineeringWuhan UniversityWuhanChina
  2. 2.State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Electrical EngineeringChongqing UniversityChongqingChina
  3. 3.School of Electrical and Electronic EngineeringHubei University of TechnologyWuhanChina

Personalised recommendations