Advertisement

Adsorption

pp 1–16 | Cite as

Novel application for palygorskite clay mineral: a kinetic and thermodynamic assessment of diesel fuel desulfurization

  • Anne B. F. CâmaraEmail author
  • Rafael V. Sales
  • Luiz C. Bertolino
  • Rayssa P. P. Furlanetto
  • Enrique Rodríguez-Castellón
  • Luciene S. de CarvalhoEmail author
Article
  • 10 Downloads

Abstract

Palygorskite (Pal) is a low-cost clay mineral material and was investigated in this study as a novel material for adsorptive desulfurization of petroleum refining fractions from the Clara Camarão Potiguar Refinery (RPCC) in Brazil. This clay mineral was characterized by X-ray fluorescence, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetry, zeta potential (\(\zeta\)) and N2 adsorption/desorption isotherm analyses. Palygorskite textural properties (specific surface area 156 m2 g−1, total pore volume 0.36 cm3 g−1) and specific surface chemistry activity with several metals were crucial to efficient adsorption, proposing that an interaction between adsorbate/adsorbent involves π-complexation mainly with Fe species. This material was used in raw and thermally activated forms to evaluate the adsorption capacity. Several kinetic and equilibrium models were used to assess the experimental data. The results showed high correlation to the pseudo-second order kinetic model for both adsorbents (R2 > 0.99), suggesting a chemisorption process as the determining step. Isotherm data were used to evaluate the equilibrium experimental data. Maximum adsorption capacity calculated from the Langmuir isotherm (R2 > 0.97) was 6.25 mg g−1 for raw-Pal at 318 K. The adsorption thermodynamic assessment of S-compounds indicated an endothermic process, and there was consequently an increase in spontaneity at higher temperatures. The adsorbent raw-Pal displayed good potential in the adsorption of sulfur compounds in real diesel fuel. Palygorskite stands out for being an abundant clay mineral in nature, environmentally safe, and with high possibility of its applications in adsorption and catalysis processes.

Keywords

Palygorskite clay mineral Adsorptive desulfurization π-Complexation Adsorption thermodynamics Adsorption kinetic 

Notes

Acknowledgements

The authors acknowledge the support provided by the Post-Graduate Chemistry Program PPGQ/UFRN, the Energetic Technologies Research Group, the Analytical Central (IQ/UFRN) and CAPES—Brazil. Enrique Rodríguez-Castellón thanks to Ministerio de Ciencia, Innovación y Universidades, Project RTI2018-099668-B-C22 and FEDER funds.

Supplementary material

10450_2019_144_MOESM1_ESM.docx (261 kb)
Supplementary material 1 (DOCX 260 kb)

References

  1. Abdelnaeim, M.Y., El Sherif, I.Y., Attia, A.A., Fathy, N.A., El-Shahat, M.F.: Impact of chemical activation on the adsorption performance of common reed towards Cu(II) and Cd(II). Int. J. Miner. Process. 157, 80–88 (2016).  https://doi.org/10.1016/j.minpro.2016.09.013 CrossRefGoogle Scholar
  2. Alinejad-Mir, A., Amooey, A.A., Ghasemi, S.: Adsorption of direct yellow 12 from aqueous solutions by an iron oxide-gelatin nanoadsorbent; kinetic, isotherm and mechanism analysis. J. Clean. Prod. 170, 570–580 (2018).  https://doi.org/10.1016/j.jclepro.2017.09.101 CrossRefGoogle Scholar
  3. Bailey, S.W.: Structure of layer silicates. In: Brindley, G.W., Brown, G. (eds.) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London (1980)Google Scholar
  4. Ben-Ali, S., Jaouali, I., Souissi-Najar, S., Ouederni, A.: Characterization and adsorption capacity of raw pomegranate peel biosorbent for cooper removal. J. Clean. Prod. 142, 3809–3821 (2017).  https://doi.org/10.1016/j.jclepro.2016.10.081 CrossRefGoogle Scholar
  5. Bordoloi, N.K., Rai, S.K., Chaudhuri, M.K., Mukherjee, A.K.: Deep-desulfurization of dibenzothiphene and its derivates present in diesel oil by a newly isolated bacterium Achrompbacter sp. to reduce the environmental pollution from fossil fuel combustion. Fuel Process. Technol. 119, 236–244 (2014).  https://doi.org/10.1016/j.fuproc.2013.10.014 CrossRefGoogle Scholar
  6. Boudriche, L., Calvet, R., Hamd, B., Balard, H.: Surface properties evolution of attapulgite by IGC as a function of thermal treatment. Colloids Surf. A 399, 1–10 (2012).  https://doi.org/10.1016/j.colsurfa.2012.02.015 CrossRefGoogle Scholar
  7. Bradley, W.F.: The structural scheme of attapulgite. Am. Miner. 25, 405–410 (1940)Google Scholar
  8. Boyd, G.E., Adamson, A.W., Myers, L.S.: The exchange adsorption of ions from aqueous solutions by organics zeolites. II. Kinetics. J. Am. Chem. Soc. 69, 2836–2848 (1947).  https://doi.org/10.1021/ja01203a066 CrossRefGoogle Scholar
  9. Brito, E.L., Gomes, D.N., Plá Cid, C.C., de Araújo, J.C.R., Bohn, F., Streck, L., Fonseca, J.L.C.: Superparamagnetic magnetite/IPEC particles. Colloids Surf. A 560, 376–383 (2019).  https://doi.org/10.1016/j.colsurfa.2018.09.067 CrossRefGoogle Scholar
  10. Câmara, A.B.F., Carvalho, L.S., Morais, C.L.M., Lima, L.A.S., Araújo, H.O.M., Oliveira, F.M., Lima, K.M.G.: MCR-ALS and PLS coupled to NIR/MIR spectroscopies for quantification and identification of adulterant in biodiesel-diesel blends. Fuel 210, 497–506 (2017).  https://doi.org/10.1016/j.fuel.2017.08.072 CrossRefGoogle Scholar
  11. Cao, J.-S., Wang, C., Fang, F., Lin, J.-X.: Removal of heavy metal Cu(II) in simulated aquaculture wastewater by modified palygorskite. Environ. Pollut. 219, 924–931 (2016)CrossRefGoogle Scholar
  12. Carvalho, L.S., Silva, E., Andrade, J.C., Silva, J.A., Urbina, M., Nascimento, P.F., Carvalho, F., Ruiz, J.A.: Low-cost mesoporous adsorbents amines-impregnated for CO2 capture. Adsorption 21, 597–609 (2015).  https://doi.org/10.1007/s10450-015-9710-8 CrossRefGoogle Scholar
  13. Chen, H., Zhao, J.: Adsorption study for removal of Congo red anionic dye using organo-attapulgite. Adsorption 15, 381–389 (2009).  https://doi.org/10.1007/s10450-009-9155-z CrossRefGoogle Scholar
  14. Chen, C., Cao, Y., Liu, S., Chen, J., Jia, W.: The catalytic properties of Cu modified attapulgite in NH3–SCO and NH3–SCR reactions. Appl. Surf. Sci. 480, 537–547 (2019).  https://doi.org/10.1016/j.apsusc.2019.03.024 CrossRefGoogle Scholar
  15. Chen, H., Zhao, J., Zhong, A., Yanxian, J.: Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue. Chem. Eng. J. 174, 143–150 (2011).  https://doi.org/10.1016/j.cej.2011.08.062 CrossRefGoogle Scholar
  16. Chen, T., Agripa, M.L., Lu, M., Dalida, M.L.P.: Adsorption of sulfur compounds from diesel with ion-impregnated activated carbons. Energy Fuels 30, 3870–3878 (2016).  https://doi.org/10.1021/acs.energyfuels.6b00230 CrossRefGoogle Scholar
  17. Chipera, S.J., Bish, D.L.: Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses. Clays Clay Miner. 49, 398–409 (2001)CrossRefGoogle Scholar
  18. Choi, A.E.S., Roces, S., Dugos, N., Arcega, A., Wei Wan, M.: Adsorptive removal of dibenzothiophene sulfone from fuel oil using clay material adsorbents. J. Clean. Prod. 161, 267–276 (2017).  https://doi.org/10.1016/j.jclepro.2017.05.072 CrossRefGoogle Scholar
  19. Demiral, H., Güngör, C.: Adsorption of Cooper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J. Clean. Prod. 124, 103–113 (2016).  https://doi.org/10.1016/j.jclepro.2016.02.084 CrossRefGoogle Scholar
  20. Díaz-García, L., Santes, V., Viveros-García, T., Sánchez-Trujillo, A., Ramírez-Salgado, J., Ornelas, C., Rodríguez-Castellón, E.: Electronic binding of sulfur sites into Al2O3 supports for NiMoS configuration and their application for hydrodesulfurization. Catal. Today 282, 230–239 (2016).  https://doi.org/10.1016/j.cattod.2016.08.001 CrossRefGoogle Scholar
  21. Duarte, F.A., Mello, P.A., Bizzi, C.A., Nunes, M.A.G., Moreira, E.M., Alencar, M.S., Motta, H.N., Dressler, V.L., Flores, E.M.M.: Sulfur removal from hydrotreated petroleum fractions using ultrasound-assisted oxidative desulfurization process. Fuel 90, 2158–2164 (2011).  https://doi.org/10.1016/j.fuel.2011.01.030 CrossRefGoogle Scholar
  22. Freundlich, H.M.F.: Over the adsorption in solution. J. Phys. Chem. 57, 385–470 (1906)Google Scholar
  23. Galan, E., Carretero, M.I.: A new approach to compositional limits for sepiolite and palygorskite. Clays Clay Miner. 4, 399–409 (1999).  https://doi.org/10.1346/CCMN.1999.0470402 CrossRefGoogle Scholar
  24. García-Romero, E., Suárez, M.: On the chemical composition of sepiolite and palygorskite. Clays Clay Miner. 58, 1–20 (2010).  https://doi.org/10.1346/CCMN.2010.0580101 CrossRefGoogle Scholar
  25. Gonzalez, F., Pesquera, C., Benito, B.I., Mendioroz, S., Pajares, J.A.: Structural and textural evolution under thermal treatment of natura and acid-activated Al-rich and Mg-rich palygorskites. Appl. Clay Sci. 5, 23–36 (1990).  https://doi.org/10.1016/0169-1317(90)90004-9 CrossRefGoogle Scholar
  26. Guan, Y., Wang, S., Wang, X., Sun, C., Wang, Y., Hu, L.: Preparation of mesoporous Al-MCM-41 from natural palygorskite and its adsorption performance for hazardous aniline dye-basic fuchsin. Microporous Mesoporous Mater. 265, 266–274 (2018).  https://doi.org/10.1016/j.micromeso.2016.04.025 CrossRefGoogle Scholar
  27. Guo, X., Yao, Y., Yin, G., Kang, Y., Luo, Y., Zhou, L.: Preparation of decolorizing ceramsites for printing and dyeing wastewater with acid and base treated clay. Appl. Clay Sci. 40, 20–26 (2008).  https://doi.org/10.1016/j.clay.2007.06.009 CrossRefGoogle Scholar
  28. Habibi, A., Belaroui, L.S., Bengueddach, A., Galindo, A.L., Díaz, C.I.S., Peña, A.: Adsorption of metronidazole and spiramycin by an Algerian palygorskite. Effect of modification with tin. Microporous Mesoporous Mater. 268, 293–302 (2018).  https://doi.org/10.1016/j.micromeso.2018.04.020 CrossRefGoogle Scholar
  29. Hernández-Maldonado, A.J., Yang, R.T.: Desulfurization of diesel fuels by adsorption via π-complexation vapor-phase exchanged Cu(I)-Y zeolites. J. Am. Chem. Sco. 126, 992–993 (2004).  https://doi.org/10.1021/ja039304m CrossRefGoogle Scholar
  30. Khan Rao, R.A., Khatoon, A.: Aluminate treated Casuarina equisetifolia leaves as potential adsorbent for sequestering Cu(II), Pb(II) and Ni(II) from aqueous solution. J. Clean. Prod. 165, 1280–1295 (2017).  https://doi.org/10.1016/j.jclepro.2017.07.160 CrossRefGoogle Scholar
  31. Khan, N.A., Jhung, S.H.: Adsorptive removal and separation of chemicals with metal-organic frameworks: contribution of π-complexation. J. Hazard. Mater. 325, 198–213 (2017).  https://doi.org/10.1016/j.jhazmat.2016.11.070 CrossRefGoogle Scholar
  32. Langmuir, I.: The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38, 2221–2295 (1916)CrossRefGoogle Scholar
  33. Liang, X., Han, J., Xu, Y., Wang, L., Sun, Y., Tan, X.: Sorption of Cd2+ on mercapto and amino functionalized palygorskite. Appl. Surf. Sci. 322, 194–201 (2014).  https://doi.org/10.1016/j.apsusc.2014.10.092 CrossRefGoogle Scholar
  34. Liu, P., Wei, G., Liang, X., Chen, D., He, H., Chen, T., Xi, Y., Chen, H., Han, D., Zhu, J.: Synergetic effect of Cu and Mn oxides supported on palygorskite for the catalytic oxidation of formaldehyde: dispersion, microstructure, and catalytic performance. Appl. Clay Sci. 161, 265–273 (2018).  https://doi.org/10.1016/j.clay.2018.04.032 CrossRefGoogle Scholar
  35. Lu, M.-C., Agripa, M.L., Wan, M.-W., Dalida, M.L.P.: Removal of oxidized sulfur compounds using different types of activated carbon, aluminum oxide, and chitosan-coated bentonite. Desalin. Water Treat. 52, 873–879 (2013).  https://doi.org/10.1080/19443994.2013.826330 CrossRefGoogle Scholar
  36. Marchuk, A., Rengasamy, P.: Clay behaviour in suspension is related to the ionicity of clay–cation bonds. Appl. Clay Sci. 53, 754–759 (2011).  https://doi.org/10.1016/j.clay.2011.05.019 CrossRefGoogle Scholar
  37. Massaro, M., Campofelice, A., Colletti, C.G., Lazzara, G., Noto, R., Riela, S.: Functionalized halloysite nanotubes: efficient carrier systems for antifungine drugs. Appl. Clay Sci. 160, 186–192 (2018).  https://doi.org/10.1016/j.clay.2018.01.005 CrossRefGoogle Scholar
  38. Middea, A., Fernandes, T.L.A.P., Neumann, R., Gomes, O.F.M., Spinelli, L.S.: Evaluation of Fe(III) adorption onto palygorskite surfaces. Appl. Surf. Sci. 282, 253–258 (2013).  https://doi.org/10.1016/j.apsusc.2013.05.113 CrossRefGoogle Scholar
  39. Monash, P., Pugazhenthi, G.: Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature. Adsorption 15, 390–405 (2009).  https://doi.org/10.1007/s10450-009-9156-y CrossRefGoogle Scholar
  40. Moura, H.O.M.A., Câmara, A.B.F., Santos, M.C.D., Morais, C.L.M., Lima, L.A.S., Lima, K.M.G., Carvalho, L.S.: Advances in chemometric control of commercial diesel adulteration by kerosene using IR spectroscopy. Anal. Bioanal. Chem. 411, 2301–2315 (2019).  https://doi.org/10.1007/s00216-019-01671-y CrossRefGoogle Scholar
  41. Mu, B., Wang, A.: Adsorption of dyes onto palygorskite and its composites: a review. J. Environ. Chem. Eng. 4, 1274–1294 (2016).  https://doi.org/10.1016/j.jece.2016.01.036 CrossRefGoogle Scholar
  42. Nowak, S., Lafon, S., Caquineau, S., Journet, E., Laurent, B.: Quantitative study of the mineralogical composition of mineral dust aerosols by X-ray diffraction. Talanta 186, 133–139 (2018).  https://doi.org/10.1016/j.talanta.2018.03.059 CrossRefGoogle Scholar
  43. Ogorodova, L., Vigasina, M., Melchakova, L., Krupskaya, V., Kiseleva, I.: Thermochemical study of natural magnesium aluminum phyllosilicate: palygorskite. J. Chem. Thermodyn. 89, 205–211 (2015).  https://doi.org/10.1016/j.jct.2015.05.023 CrossRefGoogle Scholar
  44. Oliveira, M.F., da Silva, M.G.C., Vieira, M.G.A.: Equilibrium and kinetic studies of caffeine adsorption from aqueous solutions on thermally modified Verde-lodo bentonite. Appl. Clay Sci. 168, 366–373 (2019).  https://doi.org/10.1016/j.clay.2018.12.011 CrossRefGoogle Scholar
  45. Peng, C., Zhong, Y., Min, F.: Adsorption of alkylamine cations on montmorillonite (001) surface: a density functional theory study. Appl. Clay Sci. 152, 249–258 (2018).  https://doi.org/10.1016/j.clay.2017.11.021 CrossRefGoogle Scholar
  46. Pettit, R.: The chemical properties of olefin-iron complexes. Ann. N. Y. Acad. Sci. 125, 89–97 (1965)CrossRefGoogle Scholar
  47. Raganati, F., Alfe, M., Gargiulo, V., Chirone, R., Ammendola, P.: Kinetic study and breakthrough analysis of the hybrid physical/chemical CO2 adsorption/desorption behavior of a magnetite-based sorbent. Chem. Eng. J. 372, 526–535 (2019).  https://doi.org/10.1016/j.cej.2019.04.165 CrossRefGoogle Scholar
  48. Ren, X., Miao, G., Xiao, Z., Ye, F., Li, Z., Wang, H., Xiao, J.: Catalytic adsorptive desulfurization of model diesel fuel using TiO2/SBA-15 under mild conditions. Fuel 174, 118–125 (2016).  https://doi.org/10.1016/j.fuel.2016.01.093 CrossRefGoogle Scholar
  49. Rusmin, R., Sarkar, B., Biswas, B., Churchman, J., Liu, Y., Naidu, R.: Structural, electrokinetic and surface properties of activated palygorskite for environmental application. Appl. Clay Sci. 134, 95–102 (2016).  https://doi.org/10.1016/j.clay.2016.07.012 CrossRefGoogle Scholar
  50. Saleh, T.A., Sulaiman, K.O., AL-Hammadi, S.A., Dafalla, H., Danmaliki, G.I.: Adsorptive desulfurization of thiophene, benzothiophene anddibenzothiophene over activated carbon manganese oxide nanocomposite: with column system evaluation. J. Clean. Prod. 154, 401–412 (2017).  https://doi.org/10.1016/j.jclepro.2017.03.169 CrossRefGoogle Scholar
  51. Sales, R.V., Moura, H.O.M.A., Silva, S.R.B., de Souza, M.A.F., Campos, L.M.A., Rodríguez-Castellón, E., de Carvalho, L.S.: Experimental and theoretical study of adsorptive interactions in diesel fuel desulfurization over Ag/MCM-41 adsorbent. Adsorption (2019).  https://doi.org/10.1007/s10450-019-00088-4 Google Scholar
  52. Seki, Y., Yurdakoç, K.: Adsorption of promethazine hydrochloride with KSF montmorillonite. Adsorption 12, 89–100 (2006).  https://doi.org/10.1007/s10450-006-0141-4 CrossRefGoogle Scholar
  53. Sheikhhosseini, A., Shirvani, M., Shariatmadari, H.: Competitive sorption of nickel, cadmium, zinc and copper on palygorskite and sepiolite silicate clay minerals. Geoderma 192, 249–253 (2013).  https://doi.org/10.1016/j.geoderma.2012.07.013 CrossRefGoogle Scholar
  54. Shu, C., Sun, T., Zhang, H., Jia, J., Lou, Z.: A novel process for gasoline desulfurization based on extraction with ionic liquids and reduction by sodium borohydride. Fuel 121, 72–78 (2014).  https://doi.org/10.1016/j.fuel.2013.12.037 CrossRefGoogle Scholar
  55. Soares, D.S.S., Fernandes, C.S., Costa, A.C.S., Raffin, F.N., Achhar, W., Lima e Moura, T.F.A.: Characterization of palygorskite clay from Piaui, Brazil and its potential use as excipient for solid dosage forms containing anti-tuberculosis drugs. J. Therm. Anal. Calorim. 113, 551–558 (2013).  https://doi.org/10.1007/s10973-013-3291-0 CrossRefGoogle Scholar
  56. Stanislaus, A., Marafi, A., Rana, M.S.: Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal. Today 153, 1–68 (2010).  https://doi.org/10.1016/j.cattod.2010.05.011 CrossRefGoogle Scholar
  57. Staroń, P., Chwastowski, J., Banach, M.: Sorption and desorption studies on silver ions from aqueous solution by coconut fiber. J. Clean. Prod. 149, 290–301 (2017).  https://doi.org/10.1016/j.jclepro.2017.02.116 CrossRefGoogle Scholar
  58. Suárez, M., García-Romero, E.: FTIR spectroscopic study of palygorskite: influence of the composition of the octahedral sheet. Appl. Clay Sci. 31, 154–163 (2006).  https://doi.org/10.1016/j.clay.2005.10.005 CrossRefGoogle Scholar
  59. Suárez, M., García-Romero, E., Del Río, M.S., Martinetto, P., Dooryhée, E.: The effect of the octahedral cations on the dimensions of the palygorskite cell. Clay Miner. 42, 287–297 (2007).  https://doi.org/10.1180/claymin.2007.042.3.02 CrossRefGoogle Scholar
  60. Taha, D.N., Samaka, I.S.: Natural Iraqi palygorskite clay as low cost adsorbent for the treatment of dye containing industrial wastewater. J. Oleo Sci. 61, 729–736 (2012).  https://doi.org/10.1180/claymin.2007.042.3.02 CrossRefGoogle Scholar
  61. Tang, H., Li, W., Zhang, T., Li, Q., Xing, J., Liu, H.: Improvement in diesel desulfurization capacity by equilibrium isotherms analysis. J. Purif. Technol. 78, 352–356 (2011).  https://doi.org/10.1016/j.seppur.2010.10.003 CrossRefGoogle Scholar
  62. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015).  https://doi.org/10.1515/pac-2014-1117 CrossRefGoogle Scholar
  63. Tian, G., Wang, W., Zong, L., Wang, A.: MgO/palygorskite adsorbent derived from natural Mg-rich brine and palygorskite for high-efficient removal of Cd(II) and Zn(II) ions. J. Environ. Chem. Eng. 5, 1027–1036 (2017).  https://doi.org/10.1016/j.jece.2017.01.028 CrossRefGoogle Scholar
  64. Tong, K.S., Kassin, M.J., Azraa, A.: Adsorption of copper ion from its aqueous solution by a novel biosorbent Uncariagambir: equilibrium, kinetics, and thermodynamic studies. Chem. Eng. J. 170, 145–153 (2011).  https://doi.org/10.1016/j.cej.2011.03.044 CrossRefGoogle Scholar
  65. Tu, N.T.T., Thien, T.V., Du, P.D., Chau, V.T.T., Mau, T.X., Khieu, D.Q.: Adsorptive removal of Congo red from aqueous solution using zeolitic imidazolate framework–67. J. Environ. Chem. Eng. 6, 2269–2280 (2018).  https://doi.org/10.1016/j.jece.2018.03.031 CrossRefGoogle Scholar
  66. Wang, W., Tian, G., Zhang, Z., Wang, A.: A simple hydrothermal approach to modify palygorskite for high-efficient adsorption of Methylene blue and Cu(II) ions. Chem. Eng. J. 265, 228–238 (2015).  https://doi.org/10.1016/j.cej.2014.11.135 CrossRefGoogle Scholar
  67. Wang, Y., Yang, R.T., Heinzel, J.M.: Desulfurization of jet fuel by π-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials. Chem. Eng. Sci. 63, 356–365 (2008).  https://doi.org/10.1016/j.ces.2007.09.002 CrossRefGoogle Scholar
  68. Wu, F.C., Tseng, R.L., Juang, R.S.: Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 153, 1–8 (2009).  https://doi.org/10.1016/j.cej.2009.04.042 CrossRefGoogle Scholar
  69. Xavier, K.C.M., Santos, M.S.F., Osajima, J.A., Luz, A.B., Fonseca, M.G., Silva Filho, E.C.: Thermally activated palygorskite as agents to clarify soybean oil. Appl. Clay Sci. 119, 338–347 (2016).  https://doi.org/10.1016/j.clay.2015.10.037 CrossRefGoogle Scholar
  70. Zeng, H.F., Lin, L.J., Xi, Y.M., Han, Z.Y.: Effects of raw and heated palygorskite on rumen fermentation in vitro. Appl. Clay Sci. 138, 125–130 (2017).  https://doi.org/10.1016/j.clay.2017.01.006 CrossRefGoogle Scholar
  71. Zhang, B., Kang, J., Kang, : Effect of water on methane adsorption on the kaolinite (0 0 1) surface based on molecular simulations. Appl. Surf. Sci. 439, 792–800 (2018).  https://doi.org/10.1016/j.apsusc.2017.12.239 CrossRefGoogle Scholar
  72. Zhang, X., Cheng, L., Wu, X., Tang, Y., Wu, Y.: Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue. J. Environ. Sci. 33, 97–105 (2015).  https://doi.org/10.1016/j.jes.2015.01.014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anne B. F. Câmara
    • 1
    Email author
  • Rafael V. Sales
    • 1
  • Luiz C. Bertolino
    • 2
  • Rayssa P. P. Furlanetto
    • 2
  • Enrique Rodríguez-Castellón
    • 3
  • Luciene S. de Carvalho
    • 1
    Email author
  1. 1.Energetic Technologies Research Group, Institute of ChemistryFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Mineral Technology CenterRio de JaneiroBrazil
  3. 3.Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations