Advertisement

Adsorption

pp 1–7 | Cite as

The interaction of 5-fluorouracil with graphene in presence of external electric field: a theoretical investigation

  • Zahra Kazemi
  • Reza GhiasiEmail author
  • Saeid Jamehbozorgi
Article
  • 28 Downloads

Abstract

In current research, the interaction between 5-fluorouracil (FU), as an anticancer drug, and graphene was studied in the M062X/6-311G(d,p) level of theory. The external electric field effects on the total energy, dipole moment, the energies corresponding to frontier orbitals and HOMO–LUMO gap of the fluorouracil···graphene molecule. Furthermore, the analysis of interaction of the 5-FU with graphene was carried out through the energy decomposition analysis (EDA). There were excellent linear relationships between electronic spatial extent (ESE), frontier orbital energies and energy of interaction with external electric field strength.

Keywords

5-Fluorouracil (FU) Graphene External electric field effect Energy decomposition analysis (EDA) 

Notes

References

  1. Arabi, A.A., Matta, C.F.: Effects of external electric fields on double proton transfer kinetics in the formic acid dimer. Phys. Chem. Chem. Phys. 13, 13738–13748 (2011)CrossRefGoogle Scholar
  2. Aragonès, A.C., Haworth, N.L., Darwish, N., Ciampi, S., Bloomfield, N.J., Wallace, G.G., Diez-Perez, I., Coote, M.L.: Electrostatic catalysis of a Diels-Alder reaction. Nature 531, 88–91 (2016)CrossRefGoogle Scholar
  3. Armaković, S., Armaković, S.J., Tomić, B.T., Pillai, R.R., Panicker, C.Y.: Adsorption properties of graphene towards the ephedrine—a frequently used molecule in sport. Comput. Theor. Chem. 1124, 39–50 (2018)CrossRefGoogle Scholar
  4. Bandrauk, A.D., Sedik, E.S., Matta, C.F.: Effect of absolute laser phase on reaction paths in laser-induced chemical reactions. J. Chem. Phys. 121, 7764–7775 (2004)CrossRefGoogle Scholar
  5. Bazile, D.V.: Nanotechnologies in drug delivery—an industrial perspective. J. Drug Deliv. Sci. Technol. 24, 12–21 (2014)CrossRefGoogle Scholar
  6. Bhattacharyya, P.K.: Effect of external electric field on ground and singlet excited states of phenylalanine: a theoretical study. Comput. Theor. Chem. 1057, 43–53 (2015)CrossRefGoogle Scholar
  7. Brooks, P.R., Jones, M.E.: Reactive scattering of K atoms from oriented CH3I molecules. J. Chem. Phys. 45, 3449–3450 (1966)CrossRefGoogle Scholar
  8. Cero´n-Carrasco, J.P., Jacquemin, D.: Electric-field induced mutation of DNA: a theoretical investigation of the GC base pair. Phys. Chem. Chem. Phys. 15, 4548–4553 (2013)CrossRefGoogle Scholar
  9. Chen, K., Chen, J., Guo, M., Li, Z., Yao, S.: Electrochemical behavior of MCF-7 cells on carbon nanotube modified electrode and application in evaluating the effect of 5-fluorouraci. Electroanalysis 18, 1179–1185 (2006)CrossRefGoogle Scholar
  10. de la Garza, C.G.V., Olmedo, E.M., Fomine, S.: Electronic structure of boron and nitrogen doped isomeric graphene nanoflakes. Comput. Theor. Chem. 1151, 12–23 (2019)CrossRefGoogle Scholar
  11. Denis, P.A.: Tuning the electronic properties of doped bilayer graphene with small structural changes. Comput. Theor. Chem. 974, 21–25 (2011)CrossRefGoogle Scholar
  12. Denis, P.A., Huelmo, C.P., Iribarne, F.: Theoretical characterization of sulfur and nitrogen dual-doped graphene. Comput. Theor. Chem. 1049, 13–19 (2014)CrossRefGoogle Scholar
  13. Duley, W.W., Seahra, S.S.: 2175 Å and 3.4 micron absorption bands and carbon depletion in the diffuse interstellar medium. Astrophys. J. Lett. 522, L129 (1999)CrossRefGoogle Scholar
  14. Eliason, J.F., Megyeri, A.: Potential for predicting toxicity and response of fluoropyrimidines in patients. Curr. Drug Targets 5, 383–388 (2004)CrossRefGoogle Scholar
  15. Frisch, M.J.,Trucks, G.W.,Schlegel, H.B.,Scuseria, G.E.,Robb, M.A.,Cheeseman, J.R.,Scalman, G.,Barone, V.,Mennucci, B.,Petersson, G.A.,Nakatsuji, H.,Caricato, M.,Li, X.,Hratchian, H.P.,Izmaylov, A.F.,Bloino, J.,Zheng, G.,Sonnenberg, J.L.,Hada, M.,Ehara, M.,Toyota, K.,Fukuda, R.,Hasegawa, J.,Ishida, M.,T. Nakajima,Honda, Y.,Kitao, O.,Nakai, H.,Vreven, T.,Montgomery, J.A.,Jr.,Peralta, J.E.,Ogliaro, F.,Bearpark, M.,Heyd, J.J.,Brothers, E.,Kudin, K.N.,Staroverov, V.N.,Kobayashi, R.,J. Normand,Raghavachari, K.,Rendell, A.,Burant, J.C.,Iyengar, S.S.,J. Tomasi,Cossi, M.,Rega, N.,Millam, J.M.,Klene, M.,Knox, J.E.,Cross, J.B.,Bakken, V.,Adamo, C.,Jaramillo, J.,Gomperts, R.,Stratmann, R.E.,Yazyev, O.,Austin, A.J.,Cammi, R.,Pomelli, C.,Ochterski, J.W.,Martin, R.L.,Morokuma, K.,Zakrzewski, V.G.,Voth, G.A.,Salvador, P.,Dannenberg, J.J.,Dapprich, S.,Daniels, A.D.,Farkas, O.,Foresman, J.B.,Ortiz, J.V.,Cioslowski, J.,Fox, D.J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2009.Google Scholar
  16. Geim, A.: Graphene: status and prospects. Science 324, 1530–1534 (2009)CrossRefGoogle Scholar
  17. Ghanbari, H., Cousins, B.G., Seifalian, A.M.: A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). Macromol. Rapid Commun. 32, 1032–1046 (2011)CrossRefGoogle Scholar
  18. Ghobadi, H., Ghiasi, R., Jamehbozorgi, S.: The influence of external electric field on the electronic structure and aromaticity of Iridabenzene: a DFT study. J. Struct. Chem. 60, 547–555 (2019)CrossRefGoogle Scholar
  19. Goenka, S., Sant, V., Sant, S.: Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173, 75–88 (2014)CrossRefGoogle Scholar
  20. Jalili, S., Majidi, R.: The effect of gas adsorption on carbon nanotubes properties. J. Comput. Theor. Nanosci. 3, 664–669 (2006)CrossRefGoogle Scholar
  21. Jissy, A.K., Datta, A.: Designing molecular switches based on DNA-base mispairing. J. Phys. Chem. B 114, 15311–15318 (2010)CrossRefGoogle Scholar
  22. Kar, R., Pal, S.: External field and chemical reactivity. In: Chattaraj, P.K. (ed.) Chemical Reactivity: a Density Functional View. CRC Press, Taylor & Fransis (2008)Google Scholar
  23. Kramer, K.H., Bernstein, R.B.: Sudden approximation Applied to rotational excitation of molecules by atoms I. Low angle scattering. J. Chem. Phys. 40, 200–203 (1964)CrossRefGoogle Scholar
  24. Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980)CrossRefGoogle Scholar
  25. Lu, T., Chen, F.: Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J. Mol. Graph. Model 38, 314–323 (2012)CrossRefGoogle Scholar
  26. Majidi, R., Karami, A.R.: Adsorption of formaldehyde on graphene and graphyne. Phys. E 59, 169–173 (2014)CrossRefGoogle Scholar
  27. McLean, A.D., Chandler, G.S.: Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 72, 5639–5648 (1980)CrossRefGoogle Scholar
  28. Neog, B., Sarmah, N., Kar, R., Bhattacharyya, P.K.: Effect of external electric field on aziridinium ion intermediate: A DFT study. Comput. Theor. Chem. 976, 60–67 (2011)CrossRefGoogle Scholar
  29. Nishida, K., Fujiwara, R., Kodama, Y., Fumoto, S., Mukai, T., Nakashima, M., Sasaki, H., Nakamura, J.: Regional delivery of model compounds and 5-Fluorouracil to the liver by their application to the liver surface in rats: its implication for clinical use. Pharm. Res. 22, 1331–1337 (2005)CrossRefGoogle Scholar
  30. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firson, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  31. Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)CrossRefGoogle Scholar
  32. Parthasarathi, R., Subramanian, V., Chattaraj, P.K.: Effect of electric field on the global and local reactivity indices. Chem. Phys. Lett. 382, 48–56 (2003)CrossRefGoogle Scholar
  33. Quijano-Briones, J.J., Fernández-Escamilla, H.N., Tlahuice-Flores, A.: Chiral penta-graphene nanotubes: Structure, bonding and electronic properties. Comput. Theor. Chem. 1108, 70–75 (2017)CrossRefGoogle Scholar
  34. Saban, K.V., Thomas, J., Varughese, P.A., Varghese, G.: Thermodynamics of crystal nucleation in an external electric field. Cryst. Res. Technol. 37, 1188–1199 (2002)CrossRefGoogle Scholar
  35. Saha, B., Bhattacharyya, P.K.: Anion···π interaction in oxoanion-graphene complex using coronene as model system: a DFT study. Comput. Theor. Chem. 1147, 62–71 (2019)CrossRefGoogle Scholar
  36. Shah, A., Nosheen, E., Zafar, F., Dionysiou, D.D., Badshah, A., Khan, G.S.: Photochemistry and electrochemistry of anticancer uracils. J. Photochem. Photobiol. B 117, 269–277 (2012)CrossRefGoogle Scholar
  37. Shahabi, D., Tavakol, H.: A DFT study on the catalytic ability of aluminum doped graphene for the initial steps of the conversion of methanol to gasoline. Comput. Theor. Chem. 1127, 8–15 (2018)CrossRefGoogle Scholar
  38. Shaik, S., Mandal, D., Ramanan, R.: Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016)CrossRefGoogle Scholar
  39. Shamami, M.K., Ghiasi, R.: The analysis of Os≡C bond and electric field influence on the properties in the Osmium Carbyne Complex, OsCl3(≡CCH2CMe3)(PH3)2: a theoretical insight. J. Chin. Chem. Soc. 64, 651–657 (2017)CrossRefGoogle Scholar
  40. Soltani, A., Baei, M.T., Lemeski, E.T., Kaveh, S., Balakheyli, H.: A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes. J. Phys. Chem. Solid 86, 57–64 (2015)CrossRefGoogle Scholar
  41. Tonel, M.Z., Martins, M.O., Zanella, I., Pontes, R.B., Fagan, S.B.: A first-principles study of the interaction of doxorubicin with graphene. Comput. Theor. Chem. 1115, 270–275 (2017)CrossRefGoogle Scholar
  42. Ullah, S., Denis, P.A., Sato, F.: Coupled cluster investigation of the interaction of beryllium, magnesium, and calcium with pyridine: implications for the adsorption on nitrogen-doped graphene. Comput. Theor. Chem. 1150, 57–62 (2019)CrossRefGoogle Scholar
  43. Verma, A.M., Agrawal, K., Kishore, N.: Binding of phenolic model compounds with noble metal doped graphene sheets. Comput. Theor. Chem. 1134, 37–46 (2018)CrossRefGoogle Scholar
  44. Wang, W., Sun, T., Zhang, Y., Wang, Y.-B.: Substituent effects in the π···π interaction between graphene and benzene: an indication for the noncovalent functionalization of graphene. Comput. Theor. Chem. 1046, 64–69 (2014)CrossRefGoogle Scholar
  45. Xu, W.Q., Fan, Y.Z., Wang, H.P., Teng, J., Li, Y.H., Chen, C.X., Fenske, D., Jiang, J.J., Su, C.Y.: Investigation of binding behavior between drug molecule 5-fluoracil and M4L4 type tetrahedral cages: selectivity, capture and release. Chem. Eur. J. 23, 3542–3547 (2017)CrossRefGoogle Scholar
  46. Yaraghi, A.M., Ozkendir, O., Mirzaei, M.: DFT studies of 5-fluorouracil tautomers on a silicon graphene nanosheet. Superlattices Microstruct. 85, 784–788 (2015)CrossRefGoogle Scholar
  47. Zahedi, E., Mozaffari, M., Karimi, F.-S., Nouri, A.: Density functional theory study of electric field effects on the isomerization of a photochromic molecular switch based on 1,2-dithienylethene. Can. J. Chem. 92, 317–323 (2014)CrossRefGoogle Scholar
  48. Zandiyeh, Z., Ghiasi, R.: A theoretical approach towards identification of external electric field effect on (η5-C5H5)Me2Ta(η2-C6H4). Russ. J. Phys. Chem. A 93, 482–487 (2019)CrossRefGoogle Scholar
  49. Zhang, Y., Wang, W., Wang, Y.-B.: Tetrel bonding on graphene. Comput. Theor. Chem. 1147, 8–12 (2019)CrossRefGoogle Scholar
  50. Zhao, Y., Truhlar, D.G.: Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. J. Phys. Chem. A 110, 5121–5129 (2006)CrossRefGoogle Scholar
  51. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008)CrossRefGoogle Scholar
  52. Zhao, W.-H., Yang, L.-J., Qing, L.-H., Lv, X.-M., Yi, L.-Y., Li, H., Chen, Z.-Q.: The strong effect of substituents on the carbonyl reduction in graphene oxide: a DFT study. Comput. Theor. Chem. 1068, 1–7 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Basic ScienceIslamic Azad University, Arak BranchArākIran
  2. 2.Department of Chemistry, Faculty of Basic ScienceIslamic Azad University, East Tehran BranchTehranIran
  3. 3.Department of Chemistry, Faculty of Basic ScienceIslamic Azad University, Hamedan BranchHamedanIran

Personalised recommendations