Advertisement

Exfoliation and europium(III)-functionalization of α-titanium phosphate via propylamine intercalation: from multilayer assemblies to single nanosheets

  • 79 Accesses

Abstract

Layered α-titanium phosphate intercalated with propylamine, Ti(HPO4)2·2C3H7NH2·H2O (α-TiPPr), has been synthesized by solid-vapour reaction and then exfoliated via a single-stage approach based on overnight stirring in aqueous medium. The obtained nanosheets were then functionalized using solid–liquid reaction with europium(III) nitrate aqueous solutions. The obtained materials were characterized by powder X-ray diffraction (PXRD), N2 adsorption–desorption isotherms at 77 K, scanning electron microscopy (SEM), transmission electron microscopy (TEM, SAED, STEM-EDX), atomic force microscopy (AFM) and photoluminescence spectroscopy (PL). The europium(III) sorption takes place via two distinct pathways, the first is the previously reported C3H7NH3+/[Eu(H2O)6]3+ ion-exchange process into the titanium–phosphate interlayer space of the multilayered α-TiPPr. The second pathway is the self-assembly of single-sheets which is provoked by electrostatic interactions between the negatively charged titanium–phosphate sheets and the Eu(III)-aqueous cations, leading to the formation of layered nanoparticles.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abdelbaky, M.S.M., Amghouz, Z., García-Granda, S., García, J.R.: Synthesis, structures and luminescence properties of metal-organic frameworks based on lithium–lanthanide and terephthalate. Polymers 8, 86 (2016)

  2. Alberti, G., Cavalaglio, S., Dionigi, C., Marmottini, F.: Formation of aqueous colloidal dispersions of exfoliated γ-zirconium phosphate by intercalation of short alkylamines. Langmuir 16, 7663–7668 (2000)

  3. Amghouz, Z., García-Granda, S., García, J.R., Clearfield, A., Valiente, R.: Organic-inorganic hybrids assembled from lanthanide and 1,4-phenylenebis (phosphonate). Cryst. Growth Des. 11, 5289–5297 (2011)

  4. Amghouz, Z., García-Granda, S., García, J.R., Ferreira, R.A.S., Mafra, L., Carlos, L.D., Rocha, J.: Series of metal organic frameworks assembled from Ln(III), Na(I), and chiral flexible-achiral rigid dicarboxylates exhibiting tunable UV–vis–IR light emission. Inorg. Chem. 51, 1703–1716 (2012)

  5. Atuchin, V.V., Aleksandrovsky, A.S., Chimitova, O.D., Gavrilova, T.A., Krylov, A.S., Molokeev, M.S., Oreshonkov, A.S., Bazarov, B.G., Bazarova, J.G.: Synthesis and spectroscopic properties of monoclinic α-Eu2(MoO4)3. J. Phys. Chem. C 118, 15404–15411 (2014)

  6. Binnemans, K.: Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1–45 (2015)

  7. Brunet, E.: Usual molecules in unusual environments displaying unusual properties. Aust. J. Chem. 63, 1679–1685 (2010)

  8. Chaudhari, A., Kumar, C.V.: Intercalation of proteins into α-zirconium phosphonates: tuning the binding affinities with phosphonate functions. Micropor. Mesopor. Mater. 77, 175–187 (2005)

  9. Clearfield, A., Stynes, J.A.: The preparation of crystalline zirconium phosphate and some observations on its ion exchange behavior. J. Inorg. Nucl. Chem. 26, 117–129 (1964)

  10. Clearfield, A., Blessing, R.H., Stynes, J.A.: New crystalline phases of zirconium phosphate possessing ion-exchange properties. J. Inorg. Nucl. Chem. 14, 2249–2258 (1968)

  11. Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., Nicolosi, V.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011)

  12. Espina, A., García, J.R., Guil, J.M., Jaimez, E., Parra, J.B., Rodríguez, J.: Calorimetric study of amine adsorption on α- and γ-titanium phosphate. J. Phys. Chem. B 102, 1713–1716 (1998a)

  13. Espina, A., Jaimez, E., Khainakov, S.A., Trobajo, C., García, J.R., Rodríguez, J.: Synthesis of new n-alkyldiamines intercalation compounds into α-titanium phosphate. Process selectivity and structural and morphological characterization. Chem. Mater. 10, 2490–2496 (1998b)

  14. Espina, A., Trobajo, C., Khainakov, S.A., García, J.R., Bortun, A.I.: Intercalation of n-alkylamines into layered materials: a method for the recognition of isomorphism in semicrystalline compounds. J. Chem. Soc. Dalton Trans. (2001). https://doi.org/10.1039/B005938M

  15. Ferreira, R.A.S., Nobre, S.S., Granadeiro, C.M., Nogueira, H.I.S., Carlos, L.D., Malta, O.L.: A theoretical interpretation of the abnormal 5D07F4 intensity based on the Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate. J. Lumin. 121, 561–567 (2006)

  16. García-Glez, J., Trobajo, C., Khainakov, S.A., Amghouz, Z.: α-Titanium phosphate intercalated with propylamine: an alternative pathway for efficient europium(III) uptake into layered tetravalent metal phosphates. Arab. J. Chem. 10, 885–894 (2016)

  17. García-Granda, S., Khainakov, S.A., Espina, A., García, J.R., Castro, G.R., Rocha, J., Mafra, L.: Revisiting the thermal decomposition of layered γ-titanium phosphate and structural elucidation of its intermediate phases. Inorg. Chem. 49, 2630–2638 (2010)

  18. Jeffery, A.A., Pradeep, A., Rajamathi, M.: Preparation of titanate nanosheets and nanoribbons by exfoliation of amine intercalated titanates. Phys. Chem. Chem. Phys. 18, 12604–12609 (2016)

  19. Ji, H., Huang, Z., Xia, Z., Molokeev, M.S., Jiang, X., Lin, Z., Atuchin, V.V.: Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3. Dalton Trans. 44, 7679–7686 (2015)

  20. Kim, H.N., Keller, S.W., Mallouk, T.E., Schmitt, J., Decher, G.: Characterization of zirconium phosphate/polycation thin films grown by sequential adsorption reactions. Chem. Mater. 9, 1414–1421 (1997)

  21. Kraus, K.A., Phillips, H.O.: Adsorption on inorganic materials. 1. Cation exchange properties of zirconium phosphate. J. Am. Chem. Soc. 78, 694 (1956)

  22. Kullberg, L., Clearfield, A.: Mechanism of ion-exchange in zirconium phosphates. 32. Thermodynamics of alkali-metal ion-exchange on crystalline α-ZrP. J. Phys. Chem. 85, 1585–1589 (1981)

  23. Kumar, C.V., Chaudhari, A.: Proteins immobilized at the galleries of layered α-zirconium phosphate: structure and activity studies. J. Am. Chem. Soc. 122, 830–837 (2000)

  24. Liu, Z.P., Ma, R.Z., Ebina, Y., Iyi, N., Takada, K., Sasaki, T.: General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir 23, 861–867 (2007a)

  25. Liu, Z.P., Ma, R.Z., Osada, M., Iyi, N., Ebina, Y., Takada, K., Sasaki, T.: Synthesis, anion exchange, and delamination of Co–Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128, 4872–4880 (2007b)

  26. Mafra, L., Paz, F.A.A., Rocha, J., Espina, A., Khainakov, S.A., García, J.R., Fernández, C.: Structural characterization of layered γ-titanium phosphate (C6H13NH3)[Ti(HPO4)(PO4)]·H2O. Chem. Mater. 17, 6287–6294 (2005)

  27. Mafra, L., Rocha, J., Fernández, C., Castro, G.R., García-Granda, S., Espina, A., Khainakov, S.A., García, J.R.: Characterization of layered γ-titanium phosphate (C2H5NH3)[Ti(H1.5PO4)(PO4)]2·H2O intercalate: a combined NMR, synchrotron XRD, and DFT calculations study. Chem. Mater. 20, 3944–3953 (2008)

  28. Menéndez, F., Espina, A., Trobajo, C., Rodríguez, J.: Intercalation of n-alkylamines by lamellar materials of the α-zirconium phosphate type. Mater. Res. Bull. 25, 1531–1539 (1990)

  29. Menéndez, A., Bárcena, M., Jaimez, E., García, J.R., Rodríguez, J.: Intercalation of n-alkylamines by γ-titanium phosphate. Synthesis of new materials by thermal treatment of the intercalation compounds. Chem. Mater. 5, 1078–1084 (1993)

  30. Ninjbadgar, T., Garnweitner, G., Borger, A., Goldenberg, L.M., Sakhno, O.V., Stumpe, J.: Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites. Adv. Funct. Mater. 9, 1819–1825 (2009)

  31. O’Neill, A., Khan, U., Coleman, J.N.: Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 24, 2414–2421 (2012)

  32. Ortiz-Oliveros, H.B., Flores-Espinosa, R.M., Ordóñez-Regil, E., Fernández-Valverde, S.M.: Synthesis of α-Ti(HPO4)2·H2O and sorption of Eu(III). Chem. Eng. J. 236, 398–405 (2014)

  33. Osada, M., Sasaki, T.: Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012)

  34. Oshima, T., Lu, D.L., Ishitani, O., Maeda, K.: Intercalation of highly dispersed metal nanoclusters into a layered metal oxide for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 54, 2698–2702 (2015)

  35. Parvez, K., Wu, Z.S., Li, R., Liu, X., Graf, R., Feng, X., Mullen, K.: Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014)

  36. Salvadó, M.A., Pertierra, P., García-Granda, S., García, J.R., Rodríguez, J., Fernandez-Diaz, M.T.: Neutron powder diffraction study of α-Ti (HPO4)2·H2O and α-Hf (HPO4)2·H2O: H-atom positions. Acta Cryst. B 52, 896–898 (1996)

  37. Shi, P., Xia, Z., Molokeev, M.S., Atuchin, V.V.: Crystal chemistry and luminescence properties of red-emitting CsGd1-xEux(MoO4)2 solid-solution phosphors. Dalton Trans. 43, 9669–9676 (2014)

  38. Sun, L.Y., Boo, W.J., Sun, D.Z., Clearfield, A., Sue, H.J.: Preparation of exfoliated epoxy/α-zirconium phosphate nanocomposites containing high aspect ratio nanoplatelets. Chem. Mater. 19, 1749–1754 (2007)

  39. Takei, T., Kobayashi, Y., Hata, H., Yonesaki, Y., Kumada, N., Kinomura, N., Mallouk, T.E.: Anodic electrodeposition of highly oriented zirconium phosphate and polyaniline-intercalated zirconium phosphate films. J. Am. Chem. Soc. 128, 16634–16640 (2006)

  40. Tanaka, H., Ishida, K., Okumiya, T., Murakami, M.: Preparation and exfoliation of layered titanium butyl phosphates. Colloid Polym. Sci. 288, 1427–1433 (2010)

  41. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

  42. Troup, J.M., Clearfield, A.: Mechanism of ion-exchange in zirconium phosphates. 20. Refinement of crystal structure of α-zirconium phosphate. Inorg. Chem. 16, 3311–3314 (1977)

  43. Wang, L.Z., Ebina, Y., Takada, K., Kurashima, K., Sasaki, T.: A new mesoporous manganese oxide pillared with double layers of alumina. Adv. Mater. 16, 1412–1416 (2004)

  44. Wassei, J.K., Kaner, R.B.: Oh, the places you’ll go with graphene. Acc. Chem. Res. 46, 2244–2253 (2013)

  45. Xia, Z.Y., Pezzini, S., Treossi, E., Giambastiani, G., Corticelli, F., Morandi, V., Zanelli, A., Bellani, V., Palermo, V.: The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv. Funct. Mater. 23, 4684–4693 (2013)

Download references

Acknowledgements

Financial support from Spanish Ministerio de Economía y Competitividad (MAT2013-40950-R and MAT2016-78155-C2-1-R) and Gobierno del Principado de Asturias (GRUPIN14-060), and FEDER funding are acknowledged. The authors acknowledge the help of the technical scientist, in particular, Beatriz Ramajo Escalera, at the Scientific and Technical Services, University of Oviedo, Spain.

Author information

Correspondence to Zakariae Amghouz.

Additional information

Dedicated to Prof. Abraham Clearfield, a luminary in the field of materials science for more than 60 years, on his 90th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1376 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Glez, J., Trobajo, C., Adawy, A. et al. Exfoliation and europium(III)-functionalization of α-titanium phosphate via propylamine intercalation: from multilayer assemblies to single nanosheets. Adsorption 26, 241–250 (2020). https://doi.org/10.1007/s10450-019-00133-2

Download citation

Keywords

  • Titanium phosphate
  • Propylamine
  • Exfoliation
  • Europium
  • Luminescence