, Volume 25, Issue 5, pp 941–950 | Cite as

Systematic study of the excess and the absolute adsorption of N2/H2 and CO2/H2 mixtures on Cu-BTC

  • F. A. KloutseEmail author
  • A. Hourri
  • S. Natarajan
  • P. Benard
  • R. Chahine


In this work, we report thermodynamically consistent adsorption data of H2/N2 and H2/CO2 mixtures on Cu-BTC at 297 K and pressures up to 1000 kPa. The measurements were performed on a recirculation volumetric set-up. The experimental (excess) data was converted into absolute adsorption by using the pore volume of the material, measured by Nitrogen at 77 K. From these data, the absolute and the excess surface phase properties (uptake, selectivity, surface potential) were compared. The results show that the absolute selectivity is lower than the excess selectivity in the two mixtures. Furthermore, an analysis of models’ performances in the two mixtures adsorption shows that the extended Langmuir and Toth models predict fairly the excess selectivity whereas IAST is suitable to describe the absolute selectivity.


Hydrogen purification and separation Thermodynamic consistency Selectivity Excess adsorption Absolute adsorption Multicomponent adsorption isotherms modelling Cu-BTC 



  1. Brandani, S., Mangano, E., Sarkisov, L.: Net, excess and absolute adsorption and adsorption of helium. Adsorption 22(2), 261–276 (2016)CrossRefGoogle Scholar
  2. Brandani, S., Mangano, E., Luberti, M.: Net, excess and absolute adsorption in mixed gas adsorption. Adsorption 23(4), 569–576 (2017)CrossRefGoogle Scholar
  3. Gumma, S., Talu, O.: Gibbs dividing surface and helium adsorption. Adsorption 9, 17–28 (2003)CrossRefGoogle Scholar
  4. Hughes, I.G., Hase, T.P.A.: Measurements and their Uncertainties: a practical guide to modern error analysis. Oxford University Press Inc., New York (2010)Google Scholar
  5. Jaroniec, M., Töth, J.: Adsorption of gas mixtures on heterogeneous solid surfaces: I. Extension of Tóth isotherm on adsorption from gas mixtures. Colloid Polym. Sci. 254(7), 643–649 (1976)CrossRefGoogle Scholar
  6. Keller, J.U., Göbel, M.U.: Oscillometric—volumetric measurements of pure gas adsorption equilibria devoid of the non-adsorption of helium hypothesis. Adsorpt. Sci. Technol. 33(9), 793–818 (2015)CrossRefGoogle Scholar
  7. Keller, J.U., Goebel, M.U., Seeger, T.: Oscillometric–gravimetric measurements of pure gas adsorption equilibria without the non-adsorption of helium hypothesis. Adsorption 23(6), 753–766 (2017)CrossRefGoogle Scholar
  8. Keskin, S.: Molecular simulations for adsorption-based CO2 separation using metal organic frameworks. In: Zafar, F., Sharmin, E. (eds.) Metal-Organic Frameworks. InTech, Rijeka (2016)Google Scholar
  9. Kloutse, F.A., Hourri, A., Natarajan, S., Benard, P., Chahine, R.: Experimental benchmark data of CH4, CO2 and N2 binary and ternary mixtures adsorption on MOF-5. Sep. Purif. Technol. 197, 228–236 (2018a)CrossRefGoogle Scholar
  10. Kloutse, F.A., Hourri, A., Natarajan, S., Benard, P., Chahine, R.: Hydrogen separation by adsorption: experiments and modelling of H2-N2-CO2 and H2-CH4-CO2 mixtures adsorption on CuBTC and MOF-5. Microporous Mesoporous Mater. 271, 175–185 (2018b)CrossRefGoogle Scholar
  11. Li, J.-R., Kuppler, R.J., Zhou, H.-C.: Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38(5), 1477–1504 (2009)CrossRefGoogle Scholar
  12. Li, B., Wang, H., Chen, B.: Microporous metal–organic frameworks for gas separation. Chemistry 9(6), 1474–1498 (2014)Google Scholar
  13. Liang, Z., Marshall, M., Chaffee, A.L.: CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23(5), 2785–2789 (2009)CrossRefGoogle Scholar
  14. Liu, D., Zhong, C.: Understanding gas separation in metal-organic frameworks using computer modeling. J. Mater. Chem. 20(46), 10308–10318 (2010)CrossRefGoogle Scholar
  15. Myers, A.L.: Thermodynamics of adsorption in porous materials. AIChE J. 48(1), 145–160 (2002)CrossRefGoogle Scholar
  16. Myers, A.L., Monson, P.A.: Physical adsorption of gases: the case for absolute adsorption as the basis for thermodynamic analysis. Adsorption 20(4), 591–622 (2014)CrossRefGoogle Scholar
  17. Myers, A., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965)CrossRefGoogle Scholar
  18. Panella, B., Hirscher, M., Putter, H., Muller, U.: Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv Funct Mater 16(4), 520–524 (2006)CrossRefGoogle Scholar
  19. Rao, M.B., Sircar, S.: Thermodynamic consistency for binary gas adsorption equilibria. Langmuir 15(21), 7258–7267 (1999)CrossRefGoogle Scholar
  20. Ruthven, D.M., Farooq, S., Knaebel, K.S.: Pressure Swing Adsorption, vol. 480. VCH Publishers, New York (1994)Google Scholar
  21. Silva, B., Solomon, I., Ribeiro, A.M., Lee, U.H., Hwang, Y.K., Chang, J.-S., Loureiro, J.M., Rodrigues, A.E.: H2 purification by pressure swing adsorption using CuBTC. Sep Purif Technol 118(Supplement C), 744–756 (2013)CrossRefGoogle Scholar
  22. Siperstein, F.R., Myers, A.L.: Mixed-gas adsorption. AIChE J. 47(5), 1141–1159 (2001)CrossRefGoogle Scholar
  23. Sircar, S.: Excess properties and thermodynamics of multicomponent gas adsorption. J Chem Soc Faraday Trans 81(7), 1527–1540 (1985)CrossRefGoogle Scholar
  24. Sircar, S.: Gibbsian surface excess for gas adsorptionrevisited. Ind. Eng. Chem. Res. 38(10), 3670–3682 (1999)CrossRefGoogle Scholar
  25. Sircar, S.: Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 45(16), 5435–5448 (2006)CrossRefGoogle Scholar
  26. Sircar, S.: Comments on the artificiality of actual amount adsorbed. Ind. Eng. Chem. Res. 57(19), 6766–6773 (2018)CrossRefGoogle Scholar
  27. Talbot, J.: Analysis of adsorption selectivity in a one-dimensional model system. AIChE J. 43(10), 2471–2478 (1997)CrossRefGoogle Scholar
  28. Talu, O.: Needs, status, techniques and problems with binary gas adsorption experiments. Adv. Colloid Interface Sci. 76–77, 227–269 (1998)CrossRefGoogle Scholar
  29. Talu, O.: Net adsorption of gas/vapor mixtures in microporous solids. J. Phys. Chem. C 117(25), 13059–13071 (2013)CrossRefGoogle Scholar
  30. Thomas, W.J., Crittenden, B.: 2—adsorbents. In: Adsorption Technology & Design, pp 8–30. Butterworth-Heinemann, Oxford (1998)Google Scholar
  31. Yang, R.T.: Chapter 3—equilibrium adsorption of gas mixtures. In: Gas Separation by Adsorption Processes, pp. 49–100. Butterworth-Heinemann (1987c)Google Scholar
  32. Yang, R.T.: Chapter 2—adsorbents and adsorption isotherms. In: Gas Separation by Adsorption Processes, pp. 9–48. Butterworth-Heinemann (1987b)Google Scholar
  33. Yang, R.T.: Chapter 1—introductory remarks. In: Gas Separation by Adsorption Processes, pp. 1–8. Butterworth-Heinemann (1987a)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université du Québec à Trois-RivièresTrois-RivièresCanada

Personalised recommendations