Advertisement

Adsorption

pp 1–12 | Cite as

Compared arsenic removal from aqueous solutions by synthetic mixed oxides and modified natural zeolites

  • Angélica HerediaEmail author
  • Jenny Gómez Avila
  • Ariel Vinuesa
  • Clara Saux
  • Sandra M. Mendoza
  • Fernando Garay
  • Mónica Crivello
Article
  • 11 Downloads

Abstract

Layered Double Hydroxides of Mg–Al–Fe and their mixed metallic oxides of high specific surface area were synthesized by the coprecipitation method. A natural zeolite from a regional quarry with high clinoptilolite content was conditioned and modified. Initially, an acid treatment was applied and subsequently Fe(III) was incorporated by the wet impregnation method. Then the prepared solid materials were characterized by XRD, N2 adsorption–desorption at 77 K, SEM, DRS UV–Vis, and MP-AES to determine their physicochemical properties. Finally, the solid materials were evaluated as adsorbents for arsenic removal in water. The tracking of As and its species concentration at trace levels was carried out by cathodic stripping Square-wave voltammetry, which has proved to be a highly selective and sensitive electrochemical method. High levels of effectiveness in terms of removal were achieved, particularly with the natural zeolites and mixed oxides of highest iron content.

Keywords

Arsenic Mixed oxides Natural zeolites Adsorption Filter 

Notes

Acknowledgements

Financial support from the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and Consejo Interuniversitario Nacional (CIN) PDTS Nº 517, Universidad Tecnológica Nacional – Facultad Regional Córdoba (UTN-FRC), and Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECyT-UNC) is gratefully acknowledged. J. G. A. and A.J.V. acknowledge CONICET for the fellowships granted. The authors also wish to thank geol. Julio D. Fernández (UTN-FRC, Córdoba, Argentina) for the help on recording SSA data.

Supplementary material

10450_2019_109_MOESM1_ESM.pdf (631 kb)
Supplementary material 1 (PDF 631 kb)

References

  1. Akbari Sene, R., Sharifnia, S., Moradi, G.R.: On the impact evaluation of various chemical treatments of support on the photocatalytic properties and hydrogen evolution of sonochemically synthesized TiO2/Clinoptilolite. Int. J. Hydrog. Energy 43, 695–707 (2018)CrossRefGoogle Scholar
  2. Aredes, S., Klein, B., Pawlik, M.: The removal of arsenic from water using natural iron oxide minerals. J. Clean. Prod. 29–30, 208–213 (2012)CrossRefGoogle Scholar
  3. Berlier, G., Spoto, G., Fisicaro, P., Bordiga, S., Zecchina, A., Giamello, E., Lamberti, C.: Co-ordination and oxidation changes undergone by iron species in Fe–silicalite upon template removal, activation and interaction with N2O: an in situ X-ray absorption study. Microchem. J. 71, 101–116 (2002)CrossRefGoogle Scholar
  4. Caporale, A.G., Pigna, M., Dynes, J.J., Cozzolino, V., Zhu, J., Violante, A.: Effect of inorganic and organic ligands on the sorption/desorption of arsenate on/from Al–Mg and Fe–Mg layered double hydroxides. J. Hazard. Mater. 198, 291–298 (2011)CrossRefGoogle Scholar
  5. Caporale, A.G., Pigna, M., Azam, S.M.G.G., Sommella, A., Rao, M.A., Violante, A.: Effect of competing ligands on the sorption/desorption of arsenite on/from Mg–Fe layered double hydroxides (Mg–Fe–LDH). Chem. Eng. J. 225, 704–709 (2013)CrossRefGoogle Scholar
  6. Cava, S., Tebcherani, S.M., Souza, I.A., Pianaro, S.A., Paskocimas, C.A., Longo, E., Varela, J.A.: Structural characterization of phase transition of Al2O3nanopowders obtained by polymeric precursor method. Mater. Chem. Phys. 103, 394–399 (2007)CrossRefGoogle Scholar
  7. Centi, G., Vazzana, F.: Selective catalytic reduction of N2O in industrial emissions containing O2, H2O and SO2: behavior of Fe/ZSM-5 catalysts. Catal. Today 53, 683–693 (1999)CrossRefGoogle Scholar
  8. Chmielarz, L., Kustrowski, P., Dziembaj, R., Cool, P., Vansant, E.: Catalytic performance of various mesoporoussilicas modified with copper or iron oxides introduced by different ways in the selective reduction of NO by ammonia. Appl. Catal. A 62, 369–380 (2006)CrossRefGoogle Scholar
  9. Eggleston, C.M., Stack, A.G., Rosso, K.M., Higgins, S.R., Bice, A.M., Boese, S.W., Pribyl, R.D., Nichols, J.J.: The structure of hematite (-Fe2O3) (001) surfaces in aqueous media: scanning tunneling microscopy and resonant tunneling calculations of coexisting O and Fe terminations. Geochim. Cosmochim. Acta 67, 985–1000 (2003)CrossRefGoogle Scholar
  10. Elaiopoulos, K., Perraki, Th, Grigoropoulou, E.: Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis. Micropor. Mesopor. Mat. 134, 29–43 (2010)CrossRefGoogle Scholar
  11. Evans, D.G., Slade, R.C.T.: Structural aspects of layered double hydroxides. In: Duan, X., Evans, D.G. (eds.) Layered Double Hydroxides. Springer, Berlin (2006)Google Scholar
  12. Feeney, R., Kounaves, S.P.: Voltammetric measurement of arsenic in natural waters. Talanta 58, 23–31 (2002)CrossRefGoogle Scholar
  13. Goh, K.H., Lim, T.T., Dong, Z.: Application of layered double hydroxides for removal of oxyanions: a review. Water Res. 42, 1343–1368 (2008)CrossRefGoogle Scholar
  14. Heredia, A.C., Oliva, M.I., Agú, U., Zandalazini, C.I., Marchetti, S.G., Herrero, E.R., Crivello, M.E.: Synthesis, characterization and magnetic behavior of Mg–Fe–Al mixed oxides based on layered double hydroxide. J. Magn. Magn. Mater. 342, 38–46 (2013)CrossRefGoogle Scholar
  15. Hernández-Flores, H., Pariona, N., Herrera-Trejo, M., Hdz-García, H.M., Mtz-Enriquez, A.I.: Concrete/maghemite nanocomposites as novel adsorbents for arsenic removal. J. Mol. Struct. 1171, 9–16 (2018)CrossRefGoogle Scholar
  16. Ho, Y.S., McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)CrossRefGoogle Scholar
  17. Ho, Y.S.: Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59, 171–177 (2004)CrossRefGoogle Scholar
  18. Jia, Z., Simm, A.O., Dai, X., Compton, R.G.: The electrochemical reaction mechanism of arsenic deposition on an Au(111) electrode. J. Electroanal. Chem. 587, 247–253 (2006)CrossRefGoogle Scholar
  19. Kartinen, E.O., Martin, C.J.: An overview of arsenic removal processes. Desalination 103, 79–88 (1995)CrossRefGoogle Scholar
  20. Kaushik, V., Duan, Y., Jung, B., Batchelor, B., Abdel-Wahab, A.: Arsenic removal using advanced reduction process with dithionite/UV—a kinetic study. J. Water Proc. Eng. 23, 314–319 (2018)CrossRefGoogle Scholar
  21. Litter, M.I., Armienta, M.A., Farías, S.: Metodologías analíticas para la determinación y especiación de arsénico en aguas y suelos. CYTED, Buenos Aires (2009)Google Scholar
  22. Liu, S., Wang, Q., Van Der Voort, P., Cool, P., Vansant, E., Jiang, M.: Magnetism of iron-containing MCM-41 spheres. J. Magn. Mater. 280, 31–36 (2004)CrossRefGoogle Scholar
  23. Mamindy-Pajany, Y., Hurel, C., Marmier, N., Roméo, M.: Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination 281, 93–99 (2011)CrossRefGoogle Scholar
  24. Mandal, P., Debbarma, S.R., Saha, A., Ruj, B.: Disposal problem of arsenic sludge generated during arsenic removal from drinking water. Procedia Environ. Sci. 35, 943–949 (2016)CrossRefGoogle Scholar
  25. Mayo, J.T., Yavuz, C., Yean, S., Cong, L., Shipley, H., Yu, W., Falkner, J., Kan, A., Tomson, M., Colvin, V.L.: The effect of nanocrystalline magnetite size on arsenic removal. Sci. Techol. Adv. Mater. 8, 71–75 (2007)CrossRefGoogle Scholar
  26. Mahmood, T., Din, S.U., Naeem, A., Mustafa, S., Waseem, M., Hamayun, M.: Adsorption of arsenate from aqueous solution on binary mixed oxide of iron and silicon. Chem. Eng. J. 192, 90–98 (2012)CrossRefGoogle Scholar
  27. Mays, D., Hussam, A.: Voltammetric methods for determination and speciation of inorganic arsenic in the environment—a review. Anal. Chim. Acta 646, 6–16 (2009)CrossRefGoogle Scholar
  28. Ohishi, Y., Kawabata, T., Shishido, T., Takaki, K., Zhang, Q., Wang, Y., Nomura, K., Takehira, K.: Mg–Fe–Al mixed oxides with mesoporous properties prepared from hydrotalcite as precursors: catalytic behavior in ethylbenzene dehydrogenation. Appl. Catal. A 288, 220–231 (2005)CrossRefGoogle Scholar
  29. Park, J.Y., Kim, J.H.: Characterization of adsorbed arsenate on amorphous and nano crystalline MgFe-layered double hydroxides. J. Nanopart. Res. 13, 887–894 (2011)CrossRefGoogle Scholar
  30. Peng, X., Zhao, Y., Yang, T., Yang, Y., Liu, H.: One-step and acid free synthesis of γ-Fe2O3/SBA-15 for enhanced arsenic removal. Microp. Mesop. Mater. 258, 26–32 (2018)CrossRefGoogle Scholar
  31. Pérez-Ramírez, J., Kumar, M.S., Brückner, A.: Reduction of N2O with CO over FeMFI zeolites: influence of the preparation method on the iron species and catalytic behavior. J. Catal. 223, 13–27 (2004)CrossRefGoogle Scholar
  32. Pigna, M., Krishnamurti, G.S.R., Violante, A.: Kinetics of arsenate sorption-desorption from metal oxides: effect of residence time. Soil Sci. Soc. Am. J. 70, 2017–2027 (2006)CrossRefGoogle Scholar
  33. Ramos Guivar, J., Bustamante, A., Gonzalez, J.C., Sanches, E., Morales, M.A., Raez, M.A., López-Muñoz, M.J., Arencibia, A.: Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content. Appl. Surf. Sci. 454, 87–100 (2018)CrossRefGoogle Scholar
  34. Toor, S.K., Devi, P., Bansod, B.K.S.: Electrochemical detection of trace amount of arsenic (III) at glassy carbon electrode modified with Au/Fe3O4 nanocomposites. Aquatic. Procedia 4, 1107–1113 (2015)CrossRefGoogle Scholar
  35. Triantafillidis, K., Peleka, E., Komvokis, V., Mavros, P.: Iron-modified hydrotalcite-like materials as highly efficient phosphate sorbents. J. Colloid Interface Sci. 342, 427–443 (2010)CrossRefGoogle Scholar
  36. Türk, T., Alp, I., Deveci, H.: Adsorption of arsenate from water using Mg–Fe based hydrotalcite (FeHT). J. Hazard. Mater. 171, 665–670 (2009)CrossRefGoogle Scholar
  37. Vaccari, A.: Preparation and catalytic properties of cationic and anionic clays. Catalysis Today 41(1–3), 53–71 (1998)CrossRefGoogle Scholar
  38. Valente, J., Figueras, F., Gravelle, M., Kumbhar, P., Lopez, J., Besse, J.: Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcites containing different metallic compositions. J. Catal. 189, 370–381 (2000)CrossRefGoogle Scholar
  39. Xie, P., Luo, Y., Ma, Z., Huang, C., Gao, Z.: Catalytic decomposition of N2O over Fe-ZSM-11 catalysts prepared by different methods: nature of active Fe species. J. Catal. 330, 311–322 (2015)CrossRefGoogle Scholar
  40. Yang, L., Shahrivari, Z., Liu, P.K.T., Sahimi, M., Tsotsis, T.T.: Removal of trace levels of arsenic and selenium from aqueous solutions by calcined and uncalcined layered double hydroxides (LDHs). Ind. Eng. Chem. Res. 44, 6804–6815 (2005)CrossRefGoogle Scholar
  41. Zhang, B., Liu, J., Ma, X., Zuo, P., Ye, B.C., Li, Y.: Ultrasensitive and selective assay of glutathione species in arsenic trioxide-treated leukemia HL-60 cell line by molecularly imprinted polymer decorated electrochemical sensors. Biosens. Bioelectron. 80, 491–496 (2016)CrossRefGoogle Scholar
  42. Zhu, J., Pigna, M., Cozzolino, V., Caporale, A.G., Violante, A.: Sorption of arsenite and arsenate on ferrihydrite: effect of organic and inorganic ligands. J. Hazard. Mater. 189, 564–571 (2011)CrossRefGoogle Scholar
  43. Zhu, N., Qiao, J., Ye, Y., Yan, T.: Synthesis of mesoporous bismuth-impregnated aluminum oxide for arsenic removal: adsorption mechanism study and application to a lab-scale column. J. Environ. Manag. 211, 73–82 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Angélica Heredia
    • 1
    Email author
  • Jenny Gómez Avila
    • 1
  • Ariel Vinuesa
    • 1
  • Clara Saux
    • 1
  • Sandra M. Mendoza
    • 2
  • Fernando Garay
    • 3
  • Mónica Crivello
    • 1
  1. 1.CITeQ-CONICET, Facultad Regional CórdobaUniversidad Tecnológica NacionalCórdobaArgentina
  2. 2.CONICET, Facultad Regional ReconquistaUniversidad Tecnológica NacionalReconquistaArgentina
  3. 3.INFIQC-CONICET, Departamento de Físico Química, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations