Advertisement

Adsorption

, Volume 26, Issue 2, pp 189–201 | Cite as

Experimental and theoretical study of adsorptive interactions in diesel fuel desulfurization over Ag/MCM-41 adsorbent

  • Rafael Viana Sales
  • Heloise Oliveira Medeiros de Araújo Moura
  • Sergio Ruschi Bergamachi Silva
  • Miguel Angelo Fonseca de Souza
  • Leila Maria Aguilera Campos
  • Enrique Rodríguez-Castellón
  • Luciene Santos de CarvalhoEmail author
Article

Abstract

Molecular dynamics simulation performed by the DFT/ONIOM method and X-ray photoemission spectroscopy (XPS) data were employed for studying the adsorbate-adsorbent interaction system in diesel desulfurization over Ag/MCM-41 produced from beach sand silica (MPI). The morphology and structure of the materials were characterized via powder X-ray diffraction (XRD), scanning transmission electron microscopy (STEM) and field emission scanning electron microscopy (FESEM) together with energy dispersive spectrometry (EDS) analysis. The results proved a high dispersion of different Ag nanodomains onto MCM-41 and their chemical interaction with support and sulfur compounds by π-complexation. The best fit of kinetic and equilibrium data to pseudo-second order (R2 > 0.99) and Langmuir models (R2 > 0.98), respectively, demonstrate the occurrence of chemisorptive/catalytic interactions with organosulfur compounds, as seen in the XPS results. Its adsorption capacity (qm = 31.25 mgS/g) was 10 times higher than that obtained for pure MCM-41 and double the qm for Ag/MCM-41(C) adsorbent from commercial silica. The computational modeling approach provided valuable insight towards molecular level understanding of the mechanism in aromatic S-compounds adsorption over functionalized MCM-41 and the role of Ag species in this process.

Keywords

Adsorptive desulfurization MPI silica Ag/MCM-41 adsorbent π-Complexation DFT/ONIOM 

Notes

Acknowledgement

The authors acknowledge the support provided by the Post-Graduate Programs PPGQ/UFRN and PPGE/UNIFACS. This study was financed by the Coordination for the Improvement of Higher Education Personnel (CAPES - Brazil) - Finance Code 001 and National Council for Scientific and Technological Development (CNPQ - Brazil).

Supplementary material

10450_2019_88_MOESM1_ESM.docx (431 kb)
Supplementary material 1 (DOCX 430 kb)

References

  1. Andevary, H.H., Akbari, A., Omidkhah, M.: High efficient and selective oxidative desulfurization of diesel fuel using dual-function [Omim]FeCl4 as catalyst/extractant. Fuel Process. Technol. 185, 8–17 (2019).  https://doi.org/10.1016/j.fuproc.2018.11.014 CrossRefGoogle Scholar
  2. Appaturi, J.N., Adam, F.: ImX-MCM-41 (X = Cl, Br and I): active catalysts for the solvent free synthesis of phenyl glycidyl carbonate. Surf. Interfaces 14, 305–313 (2019).  https://doi.org/10.1016/j.surfin.2019.01.006 CrossRefGoogle Scholar
  3. Battocchio, C., Meneghini, C., Fratoddi, I., Venditti, I., Russo, M.V., Aquilanti, G., Maurizio, C., Bondino, F., Matassa, R., Rossi, M., Mobilio, S., Polzonetti, G.: Silver nanoparticles stabilized with thiols: a close look at the local chemistry and chemical structure. J. Phys. Chem. C 116, 19571–19578 (2012).  https://doi.org/10.1021/jp305748a CrossRefGoogle Scholar
  4. Beck, J.S., Vartulli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenkert, J.L.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992).  https://doi.org/10.1021/ja00053a020 CrossRefGoogle Scholar
  5. Cao, Y., Dai, W.L., Deng, J.F.: The oxidative dehydrogenation of methanol over a novel Ag/SiO2 catalyst. Appl. Catal. A 158, L27–L34 (1997).  https://doi.org/10.1016/S0926-860X(97)00090-2 CrossRefGoogle Scholar
  6. Câmara, A.B.F., Carvalho, L.S., Morais, C.L.M., Lima, L.A.S., Araújo, H.O.M., Oliveira, F.M., Lima, K.M.G.: MCR-ALS and PLS coupled to NIR/MIR spectroscopies for quantification and identification of adulterant in biodiesel-diesel blends. Fuel 210, 497–506 (2017).  https://doi.org/10.1016/j.fuel.2017.08.072 CrossRefGoogle Scholar
  7. Carvalho, L.S., Silva, E., Andrade, J.C., Silva, J.A., Urbina, M., Nascimento, P.F., Carvalho, F., Ruiz, J.A.: Low-cost mesoporous adsorbents amines-impregnated for CO2 capture. Adsorption 21, 597–609 (2015).  https://doi.org/10.1007/s10450-015-9710-8 CrossRefGoogle Scholar
  8. Chen, Y., Huang, Z., Zhou, M., Ma, Z., Chen, J., Tang, X.: Single silver adatoms on nanostructured manganese oxide surfaces: boosting oxygen activation for benzene abatement. Environ. Sci. Technol. 51, 2304–2311 (2017).  https://doi.org/10.1021/acs.est.6b04340 CrossRefPubMedGoogle Scholar
  9. Choi, A.E.S., Roces, S., Dugos, N., Arcega, A., Wan, M.: Adsorptive removal of dibenzothiophene sulfone from fuel oil using clay material adsorbents. J. Clean. Prod. 161, 267–276 (2017).  https://doi.org/10.1016/j.jclepro.2017.05.072 CrossRefGoogle Scholar
  10. Dapprich, S., Komáromi, I., Byun, K.S., Morokuma, K., Frisch, M.J.: A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients and vibrational frequencies and electric field derivatives. J. Mol. Struct. 462, 1–21 (1999).  https://doi.org/10.1016/s0166-1280(98)00475-8 CrossRefGoogle Scholar
  11. Dutov, V.V., Mamontov, G.V., Zaikovskii, V.I., Liotta, L.F., Vodyankina, O.V.: Low-temperature CO oxidation over Ag/SiO2 catalysts: effect of OH/Ag ratio. Appl. Catal. B 221, 598–609 (2018).  https://doi.org/10.1016/j.apcatb.2017.09.051 CrossRefGoogle Scholar
  12. Dutov, V.V., Mamontov, G.V., Zaikovskii, V.I., Vodyankina, O.V.: The effect of support pretreatment on activity of Ag/SiO2 catalysts in low-temperature CO oxidation. Catal. Today 278, 150–156 (2016).  https://doi.org/10.1016/j.cattod.2016.05.033 CrossRefGoogle Scholar
  13. Etemadi, N., Sepahy, A.A., Mohebali, G., Yazdian, F., Omidi, M.: Enhancement of bio-desulfurization capability of a newly isolated thermophilic bacterium using starch/iron nanoparticles in a controlled system. Int. J. Biol. Macromol. 120, 1801–1809 (2018).  https://doi.org/10.1016/j.ijbiomac.2018.09.110 CrossRefPubMedGoogle Scholar
  14. Farrokhpour, H., Ghandehari, M., Eskandari, K.: ONIOM DFT study of the adsorption of cytosine on the Au/Ag and Ag/Au bimetallic nanosurfaces: the effect of sublayer. Appl. Surf. Sci. 457, 712–725 (2018).  https://doi.org/10.1016/j.apsusc.2018.06.279 CrossRefGoogle Scholar
  15. Habibi, A., Belaroui, L.S., Bengueddach, A., Galindo, A.L., Díaz, C.I.S., Peña, A.: Adsorption of metronidazole and spiramycin by an Algerian palygorskite. Effect of modification with tin. Microporous Mesoporous Mater. 268, 293–302 (2018).  https://doi.org/10.1016/j.micromeso.2018.04.020 CrossRefGoogle Scholar
  16. Habimana, F., Huo, Y., Jiang, S., Ji, S.: Synthesis of europium metal–organic framework (Eu-MOF) and its performance in adsorptive desulfurization. Adsorption 22, 1147–1155 (2016).  https://doi.org/10.1007/s10450-016-9838-1 CrossRefGoogle Scholar
  17. Hernández-Maldonado, A.J., Yang, F.H., Qi, G., Yang, R.T.: Desulfurization of transportation fuels by π-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites. Appl. Catal. B 56, 111–126 (2005).  https://doi.org/10.1016/j.apcatb.2004.06.023 CrossRefGoogle Scholar
  18. Hoflund, G.B., Weaver, J.F., Epling, W.S.: AgO XPS spectra. Surf. Sci. Spectra 3, 163–168 (1995).  https://doi.org/10.1116/1.1247779 CrossRefGoogle Scholar
  19. Hu, P., Amghouz, Z., Huang, Z., Xu, F., Chen, Y., Tang, X.: Surface-confined atomic silver centers catalyzing formaldehyde oxidation. Environ. Sci. Technol. 49, 2384–2390 (2015).  https://doi.org/10.1021/es504570n CrossRefPubMedGoogle Scholar
  20. Hua, R., Li, Y., Liu, W., Zheng, J., Wei, H., Wang, J., Lu, X., Kong, H., Xu, G.: Determination of sulfur-containing compounds in diesel oils by comprehensive two-dimensional gas chromatography with a sulfur chemiluminescence detector. J. Chrom. A 1019, 101–109 (2003).  https://doi.org/10.1016/j.chroma.2003.08.048 CrossRefGoogle Scholar
  21. Huang, Z., Gu, X., Cao, Q., Hu, P., Hao, J., Li, J., Tang, X.: Catalytically active single-atom sites fabricated from silver particles. Angew. Chem. 124, 4274–4279 (2012).  https://doi.org/10.1002/anie.201109065 CrossRefGoogle Scholar
  22. Izquierdo, R., Rodríguez, L.J., Añez, R., Sierraalta, A.: Direct catalytic decomposition of NO with Cu-ZSM-5: A DFT-ONIOM study. J. Mol. Catal. A 348, 55–62 (2011).  https://doi.org/10.1016/j.molcata.2011.07.018 CrossRefGoogle Scholar
  23. Kowalczyk, A., Borcuch, A., Michalik, M., Rutkowska, M., Gil, B., Sojka, Z., Indyka, P., Chmielarz, L.: MCM-41 modified with transition metals by template ion-exchange method as catalysts for selective catalytic oxidation of ammonia to dinitrogen. Microporous Mesoporous Mater. 240, 9–21 (2017).  https://doi.org/10.1016/j.micromeso.2016.11.002 CrossRefGoogle Scholar
  24. Li, S.-W., Gao, R.-M., Zhao, J.-S.: Different supports of modified heteropolyacid for ultra-deep oxidative desulfurization: a newly easy shaped catalyst and the DFT cluster model study. Fuel 237, 840–850 (2019).  https://doi.org/10.1016/j.fuel.2018.10.061 CrossRefGoogle Scholar
  25. Losurdo, M., Bergmair, I., Dastmalchi, B., Kim, T.-H., Giangregroio, M.M., Jiao, W., Bianco, G.V., Brown, A.S., Hingerl, K., Bruno, G.: Graphene as an electron shuttle for silver deoxidation: removing a key barrier to plasmonics and metamaterials for SERS in the visible. Adv. Funct. Mater. 24, 1864–1878 (2014).  https://doi.org/10.1002/adfm.201303135 CrossRefGoogle Scholar
  26. Ma, X., Ouyang, F.: Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation. Appl. Surf. Sci. 268, 566–570 (2013).  https://doi.org/10.1016/j.apsusc.2013.01.009 CrossRefGoogle Scholar
  27. Madey, T.E., Wagner, C.D., Joshi, A.: Surface characterization of catalysts using eléctron spectroscopies: results of a round-robin sponsored by ASTM committee D-32 on catalysts. J. Electron Spectros. Relat. Phenom. 10, 359–388 (1977).  https://doi.org/10.1016/0368-2048(77)85033-0 CrossRefGoogle Scholar
  28. Meng, C., Fang, Y., Jin, L., Hu, H.: Deep desulfurization of model gasoline by selective adsorption on Ag+/Al-MSU-S. Catal. Today 149, 138–142 (2010).  https://doi.org/10.1016/j.cattod.2009.02.038 CrossRefGoogle Scholar
  29. Morpurgo, S.: A DFT study on Cu(I) coordination in Cu-ZSM-5: effects of the functional choice and tuning of the ONIOM approach. J. Comput. Chem. 36, 660–669 (2015).  https://doi.org/10.1002/jcc.23843 CrossRefPubMedGoogle Scholar
  30. Moura, H.O.M.A., Câmara, A.B.F., Santos, M.C.D., Morais, C.L.M., Lima, L.A.S., Lima, K.M.G., Carvalho, L.S.: Advances in chemometric control of commercial diesel adulteration by kerosene using IR spectroscopy. Anal. Bioanal. Chem. 5, 2 (2019).  https://doi.org/10.1007/s00216-019-01671-y CrossRefGoogle Scholar
  31. Muzic, M., Sertic-Bionda, K., Gomzi, Z., Podolski, S., Telen, S.: Study of diesel fuel desulfurization by adsorption. Chem. Eng. Res. Des. 88, 487–495 (2010).  https://doi.org/10.1016/j.cherd.2009.08.016 CrossRefGoogle Scholar
  32. Padin, J., Yang, R.T.: New sorbents for olefin/paraffin separations by adsorption via π-complexation: synthesis and effects of substrates. Chem. Eng. Sci. 55, 2607–2616 (2000).  https://doi.org/10.1016/S0009-2509(99)00537-0 CrossRefGoogle Scholar
  33. Pham, X.N., Nguyen, B.M., Thi, H.T., Doan, H.V.: Synthesis of Ag-AgBr/Al-MCM-41 nanocomposite and its application in photocatalytic oxidative desulfurization of dibenzothiophene. Adv. Powder Technol. 29, 1827–1837 (2018).  https://doi.org/10.1016/j.apt.2018.04.019 CrossRefGoogle Scholar
  34. Qin, J., Li, B., Zhang, W., Lv, W., Han, C., Liu, J.: Synthesis, characterization and catalytic performance of well-ordered mesoporous Ni-MCM-41 with high nickel contente. Microporous Mesoporous Mater. 208, 181–187 (2015).  https://doi.org/10.1016/j.micromeso.2015.02.009 CrossRefGoogle Scholar
  35. Rajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., Sadegh, H., Shahryari, R., Asif, M., Tyagi, I., Agarwal, S., Gupta, V.K.: Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters. J. Ind. Eng. Chem. 34, 130–138 (2016).  https://doi.org/10.1016/j.jiec.2015.11.001 CrossRefGoogle Scholar
  36. Saleh, T.A., Adio, S.O., Asif, M., Dafalla, H.: Statistical analysis of phenols adsorption on diethylenetriaminemodified activated carbono. J. Clean. Prod. 182, 960–968 (2018).  https://doi.org/10.1016/j.jclepro.2018.01.242 CrossRefGoogle Scholar
  37. Santos, V.P., Pereira, M.F.R., Órfão, J.J.M., Figueiredo, J.L.: The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl. Catal. B 99, 353–363 (2010).  https://doi.org/10.1016/j.apcatb.2010.07.007 CrossRefGoogle Scholar
  38. Shen, S., Chen, J., Koodali, R.T., Hu, Y., Xiao, Q., Zhou, J., Wang, X., Guo, L.: Activation of MCM-41 mesoporous silica by transition-metal incorporation for photocatalytic hydrogen production. Appl. Catal. B 150–151, 138–146 (2014).  https://doi.org/10.1016/j.apcatb.2013.12.014 CrossRefGoogle Scholar
  39. Sikarwar, P., Kumar, U.K.A., Gosu, V., Subbaramaiah, V.: Catalytic oxidative desulfurization of DBT using green catalyst (Mo/MCM-41) derived from coal fly ash. J. Environ. Chem. Eng. 6, 1736–1744 (2018).  https://doi.org/10.1016/j.jece.2018.02.021 CrossRefGoogle Scholar
  40. Siriworarat, K., Deerattrakul, V., Dittanet, P., Kongkachuichay, P.: Production of methanol from carbon dioxide using palladium-copperzinc loaded on MCM-41: comparison of catalysts synthesized from flame spray pyrolysis and sol-gel method using silica source from rice husk ash. J. Clean. Prod. 142, 1234–1243 (2017).  https://doi.org/10.1016/j.jclepro.2016.07.099 CrossRefGoogle Scholar
  41. Sohrabnezhad, Sh, Jafarzadeh, A., Pourahmad, A.: Synthesis and characterization of MCM-41 ropes. Mater. Lett. 212, 16–19 (2018).  https://doi.org/10.1016/j.matlet.2017.10.059 CrossRefGoogle Scholar
  42. Song, H., Chang, Y., Song, H.: Deep adsorptive desulfurization over Cu, Ce bimetal ion-exchanged Y-typed molecule sieve. Adsorption 22, 139–150 (2016).  https://doi.org/10.1007/s10450-015-9731-3 CrossRefGoogle Scholar
  43. Subhan, F., Aslam, S., Yan, Z., Ikram, M., Rehman, S.: Enhanced desulfurization characteristics of Cu-KIT-6 for thiophene. Microporous Mesoporous Mater. 199, 108–116 (2014).  https://doi.org/10.1016/j.micromeso.2014.08.018 CrossRefGoogle Scholar
  44. Subhan, F., Aslam, S., Yan, Z., Zhen, L., Ikram, M., Ullah, R., Etim, U.J., Ahmad, A.: Ammonia assisted functionalization of cuprous oxide within confined spaces of SBA-15 for adsorptive desulfurization. Chem. Eng. J. 339, 557–565 (2018).  https://doi.org/10.1016/j.cej.2018.01.146 CrossRefGoogle Scholar
  45. Tang, H., Li, W., Zhang, T., Li, Q., Xing, J., Liu, H.: Improvement in diesel desulfurization capacity by equilibrium isotherms analysis. Sep. Purif. Technol. 78, 352–356 (2011).  https://doi.org/10.1016/j.seppur.2010.10.003 CrossRefGoogle Scholar
  46. Wang, J., Zhang, L., Sun, Y., Jiang, B., Chen, Y., Gao, X., Yang, H.: Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids. Fuel Process. Technol. 177, 81–88 (2018).  https://doi.org/10.1016/j.fuproc.2018.04.013 CrossRefGoogle Scholar
  47. Yang, D., Yang, S., Jiang, Z., Yu, S., Zhang, J., Pan, F., Cao, X., Wang, B., Yang, J.: Polydimethyl siloxane–graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance. J. Membr. Sci. 487, 152–161 (2015).  https://doi.org/10.1016/j.memsci.2015.03.068 CrossRefGoogle Scholar
  48. Yang, R.T.: Adsorbents: Fundamentals and Applications. Wiley, Hoboken (2003)CrossRefGoogle Scholar
  49. Yu, H., Xue, X., Huang, D.: Synthesis of mesoporous silica materials (MCM-41) from iron ore tailings. Mater. Res. Bull. 44, 2112–2115 (2009).  https://doi.org/10.1016/j.materresbull.2009.07.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rafael Viana Sales
    • 1
  • Heloise Oliveira Medeiros de Araújo Moura
    • 1
  • Sergio Ruschi Bergamachi Silva
    • 1
  • Miguel Angelo Fonseca de Souza
    • 1
  • Leila Maria Aguilera Campos
    • 2
  • Enrique Rodríguez-Castellón
    • 3
  • Luciene Santos de Carvalho
    • 1
    Email author
  1. 1.Institute of Chemistry, Federal University of Rio Grande do Norte, Energetic Technologies Research GroupNatalBrazil
  2. 2.Chemical Engineering Post-Graduate ProgramSalvador University (UNIFACS)SalvadorBrazil
  3. 3.Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations