, Volume 25, Issue 4, pp 833–842 | Cite as

Adsorption characteristics of light gases on basalt rock-based zeolite 4A

  • Kyung-Jun Hwang
  • Min Jin Hwang
  • M. S. Balathanigaimani
  • Kathy Nwe
  • Yongjoon Youn
  • Won-Seok Choi
  • Hyun-A Kim
  • Jae Woon Nah
  • Wang Geun ShimEmail author


The adsorption characteristics of light gases on basalt rock-based zeolite 4A (BR zeolite-4A) were systematically investigated to evaluate its potential application as an alternative adsorbent for adsorption-based separation processes. We used alkali fusion and hydrothermal procedure to prepare the nanostructured adsorbent, BR zeolite-4A, which was characterized with field emission scanning electron microscopy, X-ray diffraction, and carbon dioxide adsorption apparatus. The single component adsorption equilibrium for CO2, CH4, N2 and H2 on the BR zeolite-4A was volumetrically determined using a nanoPOROSITY adsorption analyzer at the temperature range from (288.15 to 308.15) K and pressure range from (0.1 to 110) kPa. The experimental results indicate that BR zeolite-4A showed higher adsorption capacities for CO2 compared to other light gases, indicating the suitable porous material for selective separation by adsorption. Three different isotherm equations, Langmuir, Toth, and Sips, were used to correlate the adsorption isotherm data and the most reasonable results obtained from the Sips model irrespective of the adsorption isotherm types. Isosteric heat of adsorption and adsorption energy distribution function values were calculated and used to further examine the surface energetic heterogeneity of BR zeolite-4A. The pure component adsorption isotherm results were also used to predict the adsorption selectivity for CO2/N2, CO2/CH4, CO2/H2, and CH4/H2 binary mixtures (50:50) at different pressure ranges using ideal adsorbed solution theory.


Adsorption Basalt rock zeolite Heterogeneity IAST Selectivity 



This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2017R1D1A3B03034385) and the author gratefully acknowledge the financial support from the Ministry of Trade, Industry and Energy (MOTIE) and the Korean Energy Technology Evaluation and Planning (KETEP) (Grant No. 20153030013010).


  1. Akten, E.D., Siriwardane, R., Sholl, D.S.: Monte carlo simulation of single-and binary-component adsorption of CO2, N2, and H2 in zeolite Na-4A. Energy Fuel 17, 977–983 (2003)CrossRefGoogle Scholar
  2. Bacsik, Z., Cheung, O., Vasiliev, P., Hedin, N.: Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Appl. Energy 162, 613–621 (2016)CrossRefGoogle Scholar
  3. Belmabkhout, Y., Sayari, A.: Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 2: adsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures. Chem. Eng. Sci. 64, 3729–3735 (2009)CrossRefGoogle Scholar
  4. Breck, D.W.: Zeolite molecular sieves: structure, chemistry, and use. Wiley, New York (1974)Google Scholar
  5. Cheung, O., Hedin, N.: Zeolites and related sorbents with narrow pores for CO2 separation from flue gas. RSC Adv. 4, 14480–14494 (2014)CrossRefGoogle Scholar
  6. Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chemsuschem 2, 796–854 (2009)CrossRefGoogle Scholar
  7. Daniel, A.L., Dilip, R.A.: Relative contributions of greenhouse gas emissions to global warming. Nature 344, 529–531 (1990)CrossRefGoogle Scholar
  8. Do, D.D.: Adsorption analysis: equilibria and kinetics. Imperial College Press, London (1998)CrossRefGoogle Scholar
  9. Grande, C.A.: Advances in pressure swing adsorption for gas separation. ISRN Chem. Eng. 2012, 1–13 (2012)CrossRefGoogle Scholar
  10. Grande, G.A., Blom, R.: Cryogenic adsorption of methane and carbon dioxide on zeolites 4A and 13X. Energy Fuel 28, 6688–6693 (2014)CrossRefGoogle Scholar
  11. Holm-Nielsen, J.B., Al, S.T., Oleskowicz-Popiel, P.: The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100, 5478–5484 (2009)CrossRefPubMedGoogle Scholar
  12. Holzwarth, U., Gibson, N.: The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotech. 6, 534 (2011)CrossRefGoogle Scholar
  13. Hullu, J., Maassen, J.I.W., van Meel, P.A., Shazad, S., Vaessen, J.M.P.: Comparing different biogas upgrading techniques-final report. Eindhoven University of Technology (2008)Google Scholar
  14. Hwang, K.J., Choi, W.S., Jung, S.H., Kwon, Y.J., Hong, S., Choi, C., Lee, J.W., Shim, W.G.: Synthesis of zeolitic material from basalt rock and its adsorption properties for carbon dioxide. RSC Adv. 8, 9524–9529 (2018)CrossRefGoogle Scholar
  15. Hwang, K.J., Park, J.Y., Kim, Y.J., Kim, G., Choi, C., Jin, S., Kim, N., Lee, J.W., Shim, W.G.: Adsorption behavior of dyestuffs on hollow activated carbon fiber from biomass. Sep. Sci. Technol. 50, 1757–1767 (2015)CrossRefGoogle Scholar
  16. Jaroniec, M., Madey, R.: Physical Adsorption on Heterogeneous Solids. Elsevier, Amsterdam (1988)Google Scholar
  17. Jensen, N.K., Rufford, T.E., Watson, G., Zhang, D.K., Chan, K.I., May, E.F.: Screening zeolites for gas separation applications involving methane, nitrogen, and carbon dioxide. J. Chem. Eng. Data 57, 106–113 (2012)CrossRefGoogle Scholar
  18. Jiang, Q., Rentschler, J., Sethia, G., Weinman, S., Perrone, R., Liu, K.: Synthesis of T-type zeolite nanoparticles for the separation of CO2/N2 and CO2/CH4 by adsorption process. Chem. Eng. J. 230, 380–388 (2013)CrossRefGoogle Scholar
  19. Kennedy, D.A., Tezel, F.H.: Cation exchange modification of clinoptilolite – Screening analysis for potential equilibrium and kinetic adsorption separations involving methane, nitrogen, and carbon dioxide. Microporous Mesoporous Mater. 262, 235–250 (2018)CrossRefGoogle Scholar
  20. Li, J.-R., Kuppler, R.J., Zhou, H.-C.: Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)CrossRefPubMedGoogle Scholar
  21. Li, Y., Yi, H., Tang, X., Li, F., Yuan, Q.: Adsorption separation of CO2/CH4 gas mixture on the commercial zeolites at atmospheric pressure. Chem. Eng. J. 229, 50–56 (2013)CrossRefGoogle Scholar
  22. Loiola, A.R., Andrade, J.C.R.A., Sasaki, J.M., da Silva, L.R.D.: Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener. J. Colloid Interface Sci. 367, 34–39 (2012)CrossRefPubMedGoogle Scholar
  23. Malek, A., Farooq, S.: Comparison of isotherm models for hydrocarbon adsorption on activated carbon. AIChE J. 42, 3191–3201 (1996)CrossRefGoogle Scholar
  24. McEwen, J., Hayman, J.-D., Ozgur, Y.A.: A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, Zeolite-13X and BPL activated carbon. Chem. Phys. 412, 72–76 (2013)CrossRefGoogle Scholar
  25. Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed gas adsorption. AIChE J. 11, 121–127 (1965)CrossRefGoogle Scholar
  26. Nahm, S.W., Shim, W.G., Park, Y.K., Kim, S.C.: Thermal and chemical regeneration of spent activated carbon and its adsorption property for toluene. Chem. Eng. J. 210, 500–509 (2012)CrossRefGoogle Scholar
  27. Pevida, M.G.C., Arias, B., Casal, M.D., Martín, C.F., Fermoso, J., Rubiera, F., Pis, J.J.: Different approaches for the development of low-cost CO2 adsorbents. J. Environ. Eng. 135, 426–432 (2009)CrossRefGoogle Scholar
  28. Ranalli, P.: Improvement of crop plants for industrial end uses. Springer, The Netherlands (2007)CrossRefGoogle Scholar
  29. Raupach, M.R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J.G., Klepper, G., Field, C.B.: Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. U.S.A. 104, 10288–10293 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rayalu, S.S., Meshram, S.U., Hasan, M.Z., Kaul, S.N.: Fly Ash Based Zeolite Technology. In: An illustration of waste to wealth. proceedings of the fifteenth international conference on solid waste technology and management. Philadelphia, USA (1999)Google Scholar
  31. Rudzinski, W., Everett, D.: Adsorption of gases on heterogeneous solid surfaces. Academic Press, London (1991)Google Scholar
  32. Saha, D., Bao, Z., Jia, F., Deng, S.: Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A. Environ. Sci. Technol. 44, 1820–1826 (2010)CrossRefPubMedGoogle Scholar
  33. Sumida, K., Rogow, D.L., Mason, J.A., McDonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T.-H., Long, J.R.: Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012)CrossRefPubMedGoogle Scholar
  34. Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., Corma, A., Mirodatos, C.: Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem. Eng. J. 155, 553–566 (2009)CrossRefGoogle Scholar
  35. Treacy, M.M.J., Higgins, J.B., Higgins, J.B.: Collection of Simulated XRD Powder Patterns for Zeolites. Elsevier B.V, The Netherlands (2001)Google Scholar
  36. Wang, Q., Luo, J., Zhong, Z., Borgna, A.: CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4, 42–55 (2011)CrossRefGoogle Scholar
  37. Xiao, M., Hu, X., Gong, Y., Gao, D., Zhang, P., Liu, Q., Liu, Y., Wang, M.: Solid transformation synthesis of zeolites from fly ash. RSC Adv. 5, 100743–100749 (2015)CrossRefGoogle Scholar
  38. Yoon, I.S., Kim, S.B.: A study on iron compounds of volcanic basalt at Hantan Riverside in Cheorwon. J. Korean Magn. Soc. 25, 169–173 (2015)CrossRefGoogle Scholar
  39. Yu, K.M.K., Curcic, I., Gabriel, J., Tsang, S.C.E.: Recent advances in CO2 capture and utilization. Chemsuschem 1, 893–899 (2008)CrossRefPubMedGoogle Scholar
  40. Zhao, Y., Nzihou, A., Minh, D.P., Lyczko, N.: A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valoriz. 8, 267–283 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kyung-Jun Hwang
    • 1
  • Min Jin Hwang
    • 2
  • M. S. Balathanigaimani
    • 3
  • Kathy Nwe
    • 1
  • Yongjoon Youn
    • 1
  • Won-Seok Choi
    • 4
  • Hyun-A Kim
    • 5
  • Jae Woon Nah
    • 6
  • Wang Geun Shim
    • 6
    Email author
  1. 1.NanoSD IncSan DiegoUSA
  2. 2.Department of Environmental System EngineeringChonnam National UniversityYeosu-siRepublic of Korea
  3. 3.Department of Chemical EngineeringRajiv Gandhi Institute of Petroleum TechnologyJaisIndia
  4. 4.Plasma Application R&D DivisionCheorwon Plasma Research InstituteCheorwon-gunRepublic of Korea
  5. 5.Reliability CenterKorea Conformity LaboratoriesDaejeonRepublic of Korea
  6. 6.Department of Polymer Science and EngineeringSunchon National UniversitySuncheon-siRepublic of Korea

Personalised recommendations