Advertisement

Adsorption

pp 1–9 | Cite as

Adsorption selectivity of heavy metals by Na-clinoptilolite in aqueous solutions

  • Xinmin LiuEmail author
  • Rui Tian
  • Wuquan Ding
  • Yunhua He
  • Hang Li
Article

Abstract

Preferential adsorption is important to classification removal of heavy metals in wastewaters. In the present study, the adsorption forces of heavy metal cations M2+ (Pb2+, Zn2+, Cd2+ and Cu2+) onto the Na+-clinoptilolite were analyzed. The selectivity sequence of heavy metal cations was given as Pb2+ > Zn2+ > Cd2+ > Cu2+. The selectivity coefficient \(\left( {K_{{{M \mathord{\left/ {\vphantom {M {\text{Na}}}} \right. \kern-0pt} {\text{Na}}}}} = \frac{{a_{\text{Na}} N_{M} }}{{a_{M} N_{\text{Na}} }}} \right)\) between M2+ and Na+ on the natural zeolite decreased with increasing ion strength, which depends on the effects of hydration volume (steric) and electron configuration of cations (coordination and polarization). The contributions of main factors resulting in the Hofmeister series on porous zeolite were: the ionic steric effects > coordination > non-classical polarization. The interactions between Na+ and zeolite is relatively weak, the electric field near zeolite surface is strong in Na+ system, and the electron configurations of heavy metals are significantly enhanced by the strong electric field using Na-zeolite. Generally, the zeolite can be pretreated by ions with weak polarization, which is helpful to increase the contributions of coordination and polarization because of the strong electric field at the zeolite/water interface in these ionic solutions, and then improve the removal efficiency of heavy metal cations in wastewaters or soils using zeolite.

Keywords

Heavy metal Polarization Electric field Ion exchange Selectivity 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41877026 and 41530855), the Natural Science Foundation Project of CQ CSTC (cstc2018jcyjAX0318), the Fundamental Research Funds for the Central Universities (XDJK2017B029) and Doctoral foundation of SWU (SWU116047).

References

  1. Alvarez-Ayuso, E., Garcıa-Sánchez, A., Querol, X.: Purification of metal electroplating waste waters using zeolites. Water Res. 37, 4855–4862 (2003).  https://doi.org/10.1016/j.watres.2003.08.009 CrossRefGoogle Scholar
  2. Andrejkovičová, S., Sudagar, A., Rocha, J., Patinha, C., Hajjaji, W., da Silva, E.F., Velosa, A., Rocha, F.: The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers. Appl. Clay Sci. 126, 141–152 (2016).  https://doi.org/10.1016/j.clay.2016.03.009 CrossRefGoogle Scholar
  3. Auerbach, S.M., Carrado, K.A., Dutta, P.K.: Handbook of Zeolite Science and Technology. CRC Press, Boca Raton (2003)CrossRefGoogle Scholar
  4. Ben-Yaakov, D., Andelman, D., Podgornik, R., Harries, D.: Ion-specific hydration effects: extending the Poisson-Boltzmann theory. Curr. Opin. Colloid Interface Sci. 16, 542–550 (2011).  https://doi.org/10.1016/j.cocis.2011.04.012 CrossRefGoogle Scholar
  5. Davies, C.W.: Ion Association. Butterworths, Washington, D.C (1962)Google Scholar
  6. Ghobarkar, H., Schäf, O., Guth, U.: Zeolites—from kitchen to space. Prog. Solid State Chem. 27, 29–73 (1999).  https://doi.org/10.1016/S0079-6786(00)00002-9 CrossRefGoogle Scholar
  7. He, Y., Li, H., Liu, X., Xiong, H.: Ion specificity of ion exchange equilibrium in natural clinoptilolite. Environ. Sci. 36, 1027–1036 (2015).  https://doi.org/10.13227/j.hjkx.2015.03.036 Google Scholar
  8. Hummer, G., Pratt, L.R., García, A.E.: Free energy of ionic hydration. J. Phys. Chem. 100, 1206–1215 (1996).  https://doi.org/10.1021/jp951011v CrossRefGoogle Scholar
  9. Inglezakis, V.J., Loizidou, M.M., Grigoropoulou, H.P.: Ion exchange studies on natural and modified zeolites and the concept of exchange site accessibility. J. Colloid Interface Sci. 275, 570–576 (2004).  https://doi.org/10.1016/j.jcis.2004.02.070 CrossRefGoogle Scholar
  10. Kiriukhin, M.Y., Collins, K.D.: Dynamic hydration numbers for biologically important ions. Biophys. Chem. 99, 155–168 (2002).  https://doi.org/10.1016/S0301-4622(02)00153-9 CrossRefGoogle Scholar
  11. Leal, M., Martínez-Hernández, V., Meffe, R., Lillo, J., de Bustamante, I.: Clinoptilolite and palygorskite as sorbents of neutral emerging organic contaminants in treated wastewater: sorption-desorption studies. Chemosphere 175, 534–542 (2017).  https://doi.org/10.1016/j.chemosphere.2017.02.057 CrossRefGoogle Scholar
  12. Leng, Y.: Hydration force between mica surfaces in aqueous KCl electrolyte solution. Langmuir 28, 5339–5349 (2012).  https://doi.org/10.1021/la204603y CrossRefGoogle Scholar
  13. Li, F., Jiang, Y., Yu, L., Yang, Z., Hou, T., Sun, S.: Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2. Appl. Surf. Sci. 252, 1410–1416 (2005).  https://doi.org/10.1016/j.apsusc.2005.02.111 CrossRefGoogle Scholar
  14. Li, S., Li, H., Xu, C.-Y., Huang, X.-R., Xie, D.-T., Ni, J.-P.: Particle interaction forces induce soil particle transport during rainfall. Soil Sci. Soc. Am. J. 77, 1563–1571 (2013).  https://doi.org/10.2136/sssaj2013.01.0009 CrossRefGoogle Scholar
  15. Li, Y., Bai, P., Yan, Y., Yan, W., Shi, W., Xu, R.: Removal of Zn2+, Pb2+, Cd2+, and Cu2+ from aqueous solution by synthetic clinoptilolite. Microporous Mesoporous Mater. 273, 203–211 (2019).  https://doi.org/10.1016/j.micromeso.2018.07.010 CrossRefGoogle Scholar
  16. Lippens, B.C., De Boer, J.: Studies on pore systems in catalysts: V. The t method. J. Catal. 4, 319–323 (1965).  https://doi.org/10.1016/0021-9517(65)90307-6 CrossRefGoogle Scholar
  17. Liu, X., Li, H., Li, R., Xie, D., Ni, J., Wu, L.: Strong non-classical induction forces in ion-surface interactions: general origin of Hofmeister effects. Sci. Rep. 4, 5047 (2014).  https://doi.org/10.1038/srep05047 CrossRefGoogle Scholar
  18. Liu, X., Hu, F., Ding, W., Tian, R., Li, R., Li, H.: A how-to approach for estimation of surface/Stern potentials considering ionic size and polarization. Analyst 140, 7217–7224 (2015a).  https://doi.org/10.1039/c5an01053e CrossRefGoogle Scholar
  19. Liu, X., Tian, R., Li, R., Ding, W., Li, H., Yuan, R.: Principles for the determination of the surface potential of charged particles in mixed electrolyte solutions. Proceedings A 471, 20150064 (2015b).  https://doi.org/10.1098/rspa.2015.0064 Google Scholar
  20. Liu, X., Ding, W., Tian, R., Du, W., Li, H.: Position of shear plane at the clay-water interface: strong polarization effects of counterions. Soil Sci. Soc. Am. J. 81, 268–276 (2017).  https://doi.org/10.2136/sssaj2016.08.0261 CrossRefGoogle Scholar
  21. Martín-Molina, A., Ibarra-Armenta, J.G., Quesada-Pérez, M.: Effect of ion dispersion forces on the electric double layer of colloids: a Monte Carlo simulation study. J. Phys. Chem. B 113, 2414–2421 (2009).  https://doi.org/10.1021/jp8019792 CrossRefGoogle Scholar
  22. Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Peter, A., Nicula, C., Tutu, H., Silipas, D., Indrea, E.: Adsorption of heavy metal cations by Na-clinoptilolite: equilibrium and selectivity studies. J. Environ. Manag. 137, 69–80 (2014).  https://doi.org/10.1016/j.jenvman.2014.02.007 CrossRefGoogle Scholar
  23. Mozgawa, W., Bajda, T.: Spectroscopic study of heavy metals sorption on clinoptilolite. Phys. Chem. Miner. 31, 706–713 (2005).  https://doi.org/10.1007/s00269-004-0433-8 CrossRefGoogle Scholar
  24. Nakamura, H., Okumura, M., Machida, M.: Monte Carlo simulation studies of cation selectivity in ion exchange of zeolites. RSC Adv. 4, 52757–52761 (2014).  https://doi.org/10.1039/C4RA09460C CrossRefGoogle Scholar
  25. Nightingale Jr., E.R.: Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63, 1381–1387 (1959).  https://doi.org/10.1021/j150579a011 CrossRefGoogle Scholar
  26. Parsons, D.F., Ninham, B.W.: Surface charge reversal and hydration forces explained by ionic dispersion forces and surface hydration. Colloids Surf. A 383, 2–9 (2011).  https://doi.org/10.1016/j.colsurfa.2010.12.025 CrossRefGoogle Scholar
  27. Shannon, R.D.: Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993).  https://doi.org/10.1063/1.353856 CrossRefGoogle Scholar
  28. Sprynskyy, M., Buszewski, B., Terzyk, A.P., Namieśnik, J.: Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J. Colloid Interface Sci. 304, 21–28 (2006).  https://doi.org/10.1016/j.jcis.2006.07.068 CrossRefGoogle Scholar
  29. Webb, T.J.: On the free energy of hydration of ions. Proc. Natl. Acad. Sci. USA 12, 524–529 (1926).  https://doi.org/10.1073/pnas.12.8.524 CrossRefGoogle Scholar
  30. Ziyath, A.M., Mahbub, P., Goonetilleke, A., Adebajo, M.O., Kokot, S., Oloyede, A.: Influence of physical and chemical parameters on the treatment of heavy metals in polluted stormwater using zeolite: a review. J. Water Res. Prot. 3, 758–767 (2011).  https://doi.org/10.4236/jwarp.2011.310086 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, College of Resources and EnvironmentSouthwest UniversityChongqingChina
  2. 2.Chongqing Key Laboratory of Environmental Materials & Remediation TechnologiesChongqing University of Arts and ScienceChongqingChina
  3. 3.Government of Lizhou DistrictGuangyuanChina

Personalised recommendations