pp 1–13 | Cite as

Characterisation of the absolute accessible volume of porous materials

  • Luis F. HerreraEmail author
  • Luisa Prasetyo
  • D. D. Do


We presented a new characterization method for surface area, pore volume and pore size distribution of a solid based on the recently proposed concept of absolute accessible volume (Prasetyo et al. 2018). This method provides a coherent framework to characterize nanoporous atomic models. It gives an advantage over earlier methods in the sense that the accessible properties, volume, surface area and pore size distribution, follow a single set of rules that are based on the energy of interaction between a molecular probe and the solid. The derived parameters result in the Henry constant and the differential heat of adsorption approaching zero at extremely high temperatures as physically demanded, and we illustrated this new method with a range of porous solids.


Accessible volume Characterization Surface area Pore size distribution 



Support from the Australian Research Council is gratefully acknowledged (DP16013540).


  1. Appell M, Jackson MA (2013) Applications of Nanoporous Materials in Agriculture. In: Advances in Applied Nanotechnology for Agriculture, vol 1143. ACS Symposium Series, vol 1143. American Chemical Society, pp 167–176.
  2. Bhattacharya, S., Gubbins, K.E.: Fast method for computing pore size distributions of model materials. Langmuir 22, 6 (2006)CrossRefGoogle Scholar
  3. Bojan, M.J., Steele, W.A.: Computer simulation of physisorption on a heterogeneous surface. Science 199, L395–L402 (1988)Google Scholar
  4. Bonnamy, S., Oberlin, A.: Chapter 4—Transmission electron microscopy. In: Inagaki, M., Kang, F. (eds.) Materials Science and Engineering of Carbon, pp. 45–70. Butterworth-Heinemann, Oxford (2016)Google Scholar
  5. Cheung, M.C., et al.: Porous nanostructured encapsulation and immobilization materials for optical biosensors. IEEE J. Sel. Top Quantum Electron. 18, 1147–1159 (2012)CrossRefGoogle Scholar
  6. Davis, M.E.: Ordered porous materials for emerging applications. Nature 417, 813–821 (2002)CrossRefGoogle Scholar
  7. Do, D., Herrera, L.F., Nicholson, D.: A method for the determination of accessible surface area, pore volume, pore size and its volume distribution for homogeneous pores of different shapes. Adsorption 17, 325–335 (2011). CrossRefGoogle Scholar
  8. Do, D.D., Do, H.D.: Appropriate volumes for adsorption isotherm studies: the absolute void volume, accessible pore volume and enclosing particle volume. J. Coll. Interface Sci. 316, 317–330 (2007)CrossRefGoogle Scholar
  9. Do, D.D., Do, H.D., Kaneko, K.: Effect of surface-perturbed intermolecular interaction on adsorption of simple gases on a graphitized carbon surface. Langmuir 20, 7623–7629 (2004)CrossRefGoogle Scholar
  10. Do, D.D., Herrera, L.F., Do, H.D.: A new method to determine pore size and its volume distribution of porous solids having known atomistic configuration. J. Colloid Interface Sci. 328, 110–119 (2008)CrossRefGoogle Scholar
  11. Fukuyama, K., Hatakeyama, Y.: Chapter 3—small-angle X-ray scattering. In: Inagaki, M., Kang, F. (eds.) Materials Science and Engineering of Carbon, pp. 27–43. Butterworth-Heinemann, Oxford (2016)Google Scholar
  12. Gelb, L.D., Gubbins, K.E.: Pore size distribution in porous glasses: a computer simulation study. Langmuir 15, 305–308 (1999)CrossRefGoogle Scholar
  13. Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area and Porosity, 2nd edn. Academic press INC., New York (1982)Google Scholar
  14. Gromiha, M.M.: Chapter 3 - Protein Structure Analysis. Protein Bioinformatics, pp. 63–105. Academic Press, Singapore (2010)CrossRefGoogle Scholar
  15. Haidary, S.M., Córcoles, E.P., Ali, N.K.: Nanoporous silicon as drug delivery systems for cancer therapies. J. Nanomater. (2012). Google Scholar
  16. Herrera, L., Do, D.D., Nicholson, D.: A Monte Carlo integration method to determine accessible volume, accessible surface area and its fractal dimension. J. Colloid Interface Sci. 348, 529–536 (2010). CrossRefGoogle Scholar
  17. Herrera, L.F., Fan, C., Do, D., Nicholson, D.: A novel and consistent method (TriPOD) to characterize an arbitrary porous solid for its accessible volume, accessible geometrical surface area and accessible pore size. Adsorption 17, 55–68 (2011). CrossRefGoogle Scholar
  18. Ilomuanya, M.O., Ifudu, N.D., Uboh, C.: The use of metronidazole and activated charcoal in the treatment of diarrhea caused by escherichia coli 0157:H7 in an in vitro pharmacodynamic model African. J. Pharm Pharmacol. 5, 1292–1296 (2011)Google Scholar
  19. Ilomuanya, M.O., Nashiru, B., Ifudu, N.D., Igwilo, C.I.: Effect of pore size and morphology of activated charcoal prepared from midribs of Elaeis guineensis on adsorption of poisons using metronidazole and Escherichia coli O157: H7 as a case study. J. Microsc. Ultrastruct. 5, 32–38 (2017). CrossRefGoogle Scholar
  20. Jones, J.E.: On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. Proc Royal Soc Lond Ser A 106, 441–462 (1924)CrossRefGoogle Scholar
  21. Kaneko, K., et al.: Role of gas adsorption in nanopore characterization. Studies in Surface Science and Catalysis, vol. 144, pp. 11–18. Elsevier, Amsterdam (2002)Google Scholar
  22. Lee, B., Richards, F.M.: The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379 (1971). CrossRefGoogle Scholar
  23. Malbrunot, P., Vidal, D., Vermesse, J., Chahine, R., Bose, T.K.: Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure. Langmuir 13, 539–544 (1997)CrossRefGoogle Scholar
  24. Michels, A., Wijker, H., Wijker, H.: Isotherms of argon between 0°c and 150°c and pressures up to 2900 atmospheres. Physica 15, 627–633 (1949). CrossRefGoogle Scholar
  25. Park, G.E., Webster, T.J.: Porous materials for biological applications. In: Encyclopedia of Medical Devices and Instrumentation. Wiley, Hoboken (2006)Google Scholar
  26. Phadungbut, P., Herrera, L.F., Do, D.D., Tangsathitkulchai, C., Nicholson, D., Junpirom, S.: Computational methodology for determining textural properties of simulated porous carbons. J. Colloid Interface Sci. 503, 28–38 (2017). CrossRefGoogle Scholar
  27. Pikunic, J., et al.: Structural modelling of porous carbons: constrained reverse Monte Carlo method. Langmuir 19, 8565–8582 (2003)CrossRefGoogle Scholar
  28. Prasetyo, L., Do, D.D., Nicholson, D.: A coherent definition of Henry constant and isosteric heat at zero loading for adsorption in solids—an absolute accessible volume. Chem. Eng. J. 334, 143–152 (2018). CrossRefGoogle Scholar
  29. Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by powders and porous solids. Academic Press, London (1999)Google Scholar
  30. Rouquerol, J., et al.: Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739–1758 (1994)CrossRefGoogle Scholar
  31. Sanchez, C., Julián, B., Belleville, P., Popall, M.: Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005)CrossRefGoogle Scholar
  32. Sarkisov, L., Harrison, A.: Computational structure characterisation tools in application to ordered and disordered porous materials. Mol. Simul. 37, 1248–1257 (2011). CrossRefGoogle Scholar
  33. Shrake, A., Rupley, J.A.: Environment and exposure to solvent of protein atoms. Lysozyme Insul. J. Mol. Biol. 79, 351–371 (1973). Google Scholar
  34. Siderius, D., Gelb, L.: Extension of the Steele 10-4-3 potential for adsorption calculations in cylindrical, spherical, and other pore geometries. J. Chem. Phys. 135, 084703 (2011). CrossRefGoogle Scholar
  35. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  36. Ta, H., Pham Ngoc, T., Nguyen, X.H., Son, D.: Metal–organic frameworks: state-of-the-art material for gas capture and storage. VNU J. Sci. 32, 67–85 (2016)Google Scholar
  37. Thomson, K.T., Gubbins, K.E.: Modeling structural morphology of microporous carbons by reverse Monte Carlo. Langmuir 16, 5761–5773 (2000). CrossRefGoogle Scholar
  38. Totrov, M., Abagyan, R.: The Contour-Buildup Algorithm to Calculate the Analytical Molecular Surface. J. Struct. Biol. 116, 138–143 (1996). CrossRefGoogle Scholar
  39. Walton, K.S., Snurr, R.Q.: Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J. Am. Chem. Soc. 129, 8552–8556 (2007)CrossRefGoogle Scholar
  40. Wheatley, P.S., et al.: NO-releasing zeolites and their antithrombotic properties. J. Am. Chem. Soc. 128, 502–509 (2006)CrossRefGoogle Scholar
  41. Wu, T., Wang, B., Lu, Z., Zhou, R., Chen, X.: Alumina-supported AlPO-18 membranes for CO2/CH4 separation. J. Membr. Sci. 471, 338–346 (2014). CrossRefGoogle Scholar
  42. Zong, Z., Elsaidi, S.K., Thallapally, P.K., Carreon, M.A.: Highly permeable AlPO-18 membranes for N2/CH4 separation industrial & engineering. Chem. Res. 56, 4113–4118 (2017). Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Engineering, IT and EnvironmentCharles Darwin UniversityDarwinAustralia
  2. 2.School of Chemical EngineeringUniversity of QueenslandSt LuciaAustralia

Personalised recommendations