pp 1–9 | Cite as

Measuring adsorption isotherms with a flowmeter and a pressure gauge

Observations on the quasi-equilibrium method
  • Fernando Vallejos-BurgosEmail author
  • Katsumi Kaneko


We revisit the quasi-equilibrium adsorption method as an inexpensive alternative to commercial volumetric apparatus for the measurement of gas adsorption isotherms. This method is based on how the pressure of a manifold containing the sample increases as a function of time when an adsorbing gas is introduced. We show that, under certain conditions, it is not necessary to employ ultra-low flow rates (i.e. below few cm3/h) to obtain reliable adsorption isotherms. Also, we show that by time-differentiating the mass balance equation, it is possible to obtain and measure directly the rates of adsorption. These new insights provide a low-cost and simple approach to the measurements of both adsorption equilibrium and rates.


Quasi-equilibrium adsorption Flow adsorption Adsorption rate Hopcalite Activated carbon fibers Molecular sieves 



We appreciate the suggestions provided by Dr. Jacek Jagiełło from Micromeritics Instruments Corp and from Dr. Carlos León y León from Morgan Advanced Materials.

Supplementary material

10450_2019_68_MOESM1_ESM.pdf (738 kb)
Supplementary material 1 (PDF 738 KB)


  1. Ajot, H., Joly, J.F., Raatz, F., Russmann, C.: A new apparatus for continuous adsorption. Application to the characterization of microporous solids. In: Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., Unger, K.K. (eds.) Studies in Surface Science and Catalysis, Characterization of Porous Solids II, vol. 62, pp. 161–167. Elsevier, Amsterdam (1991). Google Scholar
  2. Ajot, H., Joly, J.F., Garnier, D.A., Marny, F., Raatz, F., Russmann, C.: Method of and an apparatus for measuring the adsorption and the desorption of a gas adsorbed by a solid sample and the use thereof. US Patent No. 5,239,482 (1993)Google Scholar
  3. Azarfar, S., Mirian, S., Anisi, H., Soleymani, R., Sadighi, S.: Characterization of 3A molecular sieve using micromeritics tristar device. In: The first conference on the new laboratory techniques in oil, gas and petrochemical industries, Tehran, Iran (2015)Google Scholar
  4. Broom, D.: Techniques for the measurement of gas adsorption by carbon nanostructures. In: Terranova, M.L., Orlanducci, S., Rossi, M. (eds.) Carbon Nanomaterials for Gas Adsorption, pp. 1–38. Pan Stanford Publishing, Singapore (2012)Google Scholar
  5. Conner, C.W.: Physical adsorption in microporous solids. In: Conner, C.W., Fraissard, J.P. (eds.) Physical Adsorption: Experiment, Theory and Applications. NATO ASI Series, vol. 491, p. 619. Springer, Dordrecht (1997)Google Scholar
  6. De Boer, J.H.: Endothermic chemisorption and catalysis. In: Farkas, A. (ed.) Advances in Catalysis, Proceedings of the International Congress on Catalysis, vol. 9, pp. 472–480. Academic Press, Cambridge (1957). CrossRefGoogle Scholar
  7. Do, D.: Adsorption Analysis: Equilibria and Kinetics. Chemical Engineering. World Scientific Publishing Company, Singapore (1998)Google Scholar
  8. El-Merraoui, M., Aoshima, M., Kaneko, K.: Micropore size distribution of activated carbon fiber using the density functional theory and other methods. Langmuir 16(9), 4300–4304 (2000). CrossRefGoogle Scholar
  9. Grillet, Y., Rouquerol, F., Rouquerol, J.: Étude de l’adsorption physique des gaz par une procédure continue. J. Chim. Phys. 74, 179–182 (1977). CrossRefGoogle Scholar
  10. Hattori, Y., Noguchi, N., Okino, F., Touhara, H., Nakahigashi, Y., Utsumi, S., Tanaka, H., Kanoh, H., Kaneko, K.: Defluorination-enhanced hydrogen adsorptivity of activated carbon fibers. Carbon 45(7), 1391–1395 (2007). CrossRefGoogle Scholar
  11. Innes, W.B.: Apparatus and procedure for rapid automatic adsorption, surface area, and pore volume measurement. Anal. Chem. 23(5), 759–763 (1951). CrossRefGoogle Scholar
  12. Ito, H., Iiyama, T., Ozeki, S.: Kinetics of cluster-mediated filling of water molecules into carbon micropores. J. Phys. Chem. C 119(8), 4118–4125 (2015). CrossRefGoogle Scholar
  13. Lange, K.R.: Adsorption isotherms by a rapid flow method. J. Coll. Sci. 18(1), 65–72 (1963). CrossRefGoogle Scholar
  14. Liu, Y., Shen, L.: From Langmuir kinetics to first- and second-order rate equations for adsorption. Langmuir 24(20), 11625–11630 (2008). CrossRefGoogle Scholar
  15. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M.: Characterization of Porous Solids and Powders: Surface Area Pore Size and Density. Springer, Dordrecht (2012)Google Scholar
  16. Michot, L., Francois, M., Cases, J.M.: Surface heterogeneity studied by a quasi-equilibrium gas adsorption procedure. Langmuir 6(3), 677–681 (1990). CrossRefGoogle Scholar
  17. Musick, J.K., Williams, F.W.: Hopcalite catalyst for catalytic oxidation of gases and aerosols. Ind. Eng. Chem. Prod. Res. Dev. 14(4), 284–286 (1975). Google Scholar
  18. Myers, A.L.: Thermodynamics of adsorption in porous materials. AIChE J. 48(1), 145–160 (2002). CrossRefGoogle Scholar
  19. Northrop, P.S., Flagan, R.C., Gavalas, G.R.: Measurement of gas adsorption isotherms by continuous adsorbate addition. Langmuir 3(2), 300–302 (1987). CrossRefGoogle Scholar
  20. Rouquerol, J., Grillet, Y., Rouquerol, F., Ward, R.J.: A critical assessment of quasi-equilibrium gas adsorption techniques in volumetry, gravimetry or calorimetry. In: Unger, K.K., Rouquerol, J., Sing, K.S.W., Kral, H. (eds.) Studies in Surface Science and Catalysis, Characterization of Porous Solids, vol. 39, pp. 67–76. Elsevier, Amsterdam (1988). Google Scholar
  21. Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., Sing, K.S.W.: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd edn. Academic Press, Cambridge (2013)Google Scholar
  22. Rudzinski, W., Plazinski, W.: Kinetics of solute adsorption at solid/solution interfaces: a theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport. J. Phys. Chem. B 110(33), 16514–16525 (2006). CrossRefGoogle Scholar
  23. Schlosser, E.G.: Automatisch arbeitende Apparatur zur Oberflächenbestimmung nach BET. Chemie Ingenieur Technik 31(12), 799–805 (1959). CrossRefGoogle Scholar
  24. Shimomura, M., Yoshida, M., Endo, A.: Influence of free-space calibration using He on the measurement of adsorption isotherms. Adsorption 23(2), 249–255 (2017). CrossRefGoogle Scholar
  25. Sing, K.S.W., Williams, R.T.: The use of molecular probes for the characterization of nanoporous adsorbents. Part. Part. Syst. Charact. 21(2), 71–79 (2004). CrossRefGoogle Scholar
  26. Sircar, S., Hufton, J.: Why does the linear driving force model for adsorption kinetics work? Adsorption 6(2), 137–147 (2000). CrossRefGoogle Scholar
  27. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl. Chem. 87(9–10), 1051–1069 (2015). (IUPAC Technical Report)Google Scholar
  28. Vallejos-Burgos, F.: Quasi-equilibrium adsorption. Open Science Framework Repository (2019).
  29. Vallejos-Burgos, F., Coudert, F.X., Kaneko, K.: Air separation with graphene mediated by nanowindow-rim concerted motion. Nat. Commun. 9(1), 1812 (2018). CrossRefGoogle Scholar
  30. Venkatraman, A., Fan, L.T., Walawender, W.P.: Nonideality correction factors for adsorbates. J. Coll. Interface Sci. 183(1), 291–294 (1996). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Energy and Environmental ScienceShinshu UniversityWakasatoJapan
  2. 2.Morgan Advanced MaterialsCarbon Science Centre of ExcellenceState CollegeUSA

Personalised recommendations