, Volume 25, Issue 3, pp 601–611 | Cite as

Nitrogen adsorption at ca. 77.4 K on partially hydrated and anhydrous α-Al2O3

  • Maxim S. Mel’gunovEmail author
  • Artem B. Ayupov
  • Elena A. Krapivina
  • Elena A. Mel’gunova


N2 adsorption isotherms at ca. 77 K on macroporous α-Al2O3 have been measured and analyzed in the frameworks of the classic thermodynamic approach, with independent experimental data obtained by means of SEM-EDX, XRD, TGA, helium pycnometry, and mercury porosimetry taken into account. It is shown, that presence of adsorbed water considerably influences N2 adsorption, which gradually increases with temperature of the degas treatment. Simultaneously, the shape of the isotherms has a trend to change from Type II to Type VI, that assumes changing of adsorption mechanism from progressive increasing of the adsorbed layer thickness towards layer-by-layer adsorption. Corrected and smoothed isotherms are presented in the tabular form as reference for subsequent more comprehensive analysis using molecular statistical approaches.


Reference adsorption N2 Alumina Corundum 



This work was supported by Ministry of Science and Higher Education of the Russian Federation (Project АААА-А17-117041710079-8).

Supplementary material

10450_2019_55_MOESM1_ESM.xlsx (67 kb)
Supplementary material 1. (XLSX 67 KB)


  1. Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951). CrossRefGoogle Scholar
  2. Broekhoff, J.C.P., de Boer, J.H.: Studies on pore systems in catalysts: IX. Calculation of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores A. Fundamental equations. J. Catal. 9, 8–14 (1967). CrossRefGoogle Scholar
  3. Busca, G.: The surface of transitional aluminas: a critical review. Catal. Today. 226, 2–13 (2014). CrossRefGoogle Scholar
  4. Čejka, J., Žilková, N., Rathouský, J., Zukal, A., Jagiello, J.: High-resolution adsorption of nitrogen on mesoporous alumina. Langmuir. 20, 7532–7539 (2004). CrossRefGoogle Scholar
  5. Coster, D.J., Fripiat, J.J., Muscas, M., Auroux, A.: Effect of bulk properties on the rehydration behavior of aluminas. Langmuir. 11, 2615–2620 (1995). CrossRefGoogle Scholar
  6. de Boer, J.H., Lippens, B.C.: Studies on pore systems in catalysts II. The shapes of pores in aluminum oxide systems. J. Catal. 3, 38–43 (1964). CrossRefGoogle Scholar
  7. de Boer, J.H., Linsen, B.G., Osinga, T.J.: Studies on pore systems in catalysts: VI. The universal t curve. J. Catal. 4, 643–648 (1965). CrossRefGoogle Scholar
  8. Israelachvili, J.N.: Intermolecular and surface forces. Academic Press, London (2011)Google Scholar
  9. Jaroniec, M., Fulvio, P.F.: Standard nitrogen adsorption data for α-alumina and their use for characterization of mesoporous alumina-based materials. Adsorption. 19, 475–481 (2013). CrossRefGoogle Scholar
  10. Linsen, B.G. (ed.): Physical and chemical aspects of adsorbents and catalysts. Academic Press, London (1970)Google Scholar
  11. Ma, S.-Y., Liu, L.-M., Wang, S.-Q.: Water film adsorbed on the α-Al2O3(0001) surface: structural properties and dynamical behaviors from first-principles molecular dynamics simulations. J. Phys. Chem. C. 120, 5398–5409 (2016). CrossRefGoogle Scholar
  12. Malyshev, M.E., Paukshtis, E.A., Malysheva, L.V.: Interaction of N2 with the acid sites of oxides. Kinet. Catal. 46, 107–113 (2005). CrossRefGoogle Scholar
  13. McHale, J.M., Navrotsky, A., Perrotta, A.J.: Effects of increased surface area and chemisorbed H2O on the relative stability of nanocrystalline γ-Al2O3 and α-Al2O3. J. Phys. Chem. B. 101, 603–613 (1997). CrossRefGoogle Scholar
  14. Mel’gunov, M.S., Ayupov, A.B.: Direct method for evaluation of BET adsorbed monolayer capacity. Microporous Mesoporous Mater. 243, 147–153 (2017). CrossRefGoogle Scholar
  15. Ranea, V.A., Schneider, W.F., Carmichael, I.: DFT characterization of coverage dependent molecular water adsorption modes on α-Al2O3(0001). Surf. Sci. 602, 268–275 (2008). CrossRefGoogle Scholar
  16. Span, R., Lemmon, E.W., Jacobsen, R.T., Wagner, W., Yokozeki, A.: A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa. J. Phys. Chem. Ref. Data. 29, 1361–1433 (2000). CrossRefGoogle Scholar
  17. Steele, W.A.: The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms. Surf. Sci. 36, 317–352 (1973). CrossRefGoogle Scholar
  18. Tanaka, N., Kimata, K., Araki, T., Tsuchiya, H., Hashizume, K.: Microscopic characterization of high-performance liquid chromatographic packing materials. J. Chromatogr. A. 544, 319–344 (1991). CrossRefGoogle Scholar
  19. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069: (2015). CrossRefGoogle Scholar
  20. Ustinov, E.A., Do, D.D.: Application of a generalized thermodynamic approach to characterize mesoporous materials. Colloids Surf. Physicochem. Eng. Asp. 272, 68–81 (2006). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maxim S. Mel’gunov
    • 1
    • 2
    Email author
  • Artem B. Ayupov
    • 1
    • 2
  • Elena A. Krapivina
    • 1
    • 2
  • Elena A. Mel’gunova
    • 1
  1. 1.Boreskov Institute of Catalysis SB RASNovosibirskRussian Federation
  2. 2.Novosibirsk State UniversityNovosibirskRussian Federation

Personalised recommendations