Advertisement

Adsorption

, Volume 25, Issue 3, pp 555–565 | Cite as

Heat capacity and heat of adsorption at orientational phase transition in nitrogen monolayer on graphite

  • Sergey Akimenko
  • Vitaly Gorbunov
  • Eugene UstinovEmail author
Article
  • 54 Downloads

Abstract

In this paper, we report a simulation study of the effect of the herringbone orientational phase transition on the isosteric heat of adsorption and the heat capacity of the nitrogen adsorption monolayer on graphite surface. We use the previously proposed regression equations of state for phases with the short- and long-ranged orientational ordering (Ustinov et al. in J Phys Chem C 122:2897–2908, 2018). The proposed approach allows one to give an exhaustive thermodynamic description of the isobaric phase transition without direct estimation of the chemical potential, using only the pVT data obtained in a canonical Monte Carlo simulation. The herringbone orientational phase transition is indicated by a peak in the temperature dependence of the heat capacity. Its height and shape is close to those observed experimentally. In addition, the heat spike is observed on the isosteric heat curves near the transition region. It decreases with increasing temperature and completely disappears at a temperature close to the melting point in the gas-crystal system. A combined analysis of the heat capacity and isosteric heat of adsorption demonstrates that the nitrogen monolayer on graphite surface has similar features inherent in a three-dimensional system and, therefore, the translational and rotational degrees of freedom normal to the surface are involved in the mechanism of the long-to-short-ranged orientational transition.

Keywords

Orientational phase transition Kinetic Monte Carlo Heat capacity Heat of adsorption Nitrogen monolayer Graphite 

Notes

Acknowledgements

The authors acknowledge financial support by the Russian Foundation for Basic Research, Project No. 17-03-00091a.

References

  1. Bruch, L.W.: Theory of physisorption interactions. Surf. Sci. 125, 194–217 (1983)CrossRefGoogle Scholar
  2. Cai, Z.-X.: Orientational phase transitions in systems of adsorbed molecules. Phys. Rev. B 43, 6163–6166 (1991)CrossRefGoogle Scholar
  3. Chan, M.H.W., Migone, A.D., Miner, K.D., Li, Z.R.: Thermodynamic study of phase transitions of monolayer N 2 on graphite. Phys. Rev. B 30, 2681 (1984)CrossRefGoogle Scholar
  4. Chung, T.T., Dash, J.G.: N2 monolayers on graphite: specific heat and vapor pressure measurements–thermodynamics of size effects and steric factors. Surf. Sci. 66, 559–580 (1977)CrossRefGoogle Scholar
  5. Diehl, R.D., Fain, S.C.: Structure and orientational ordering of nitrogen molecules physisorbed on graphite. Surf. Sci. 125, 116–152 (1983)CrossRefGoogle Scholar
  6. Diehl, R.D., Toney, M.F., Fain, S.C. Jr.: Orientational ordering of nitrogen molecular axes for a commensurate monolayer physisorbed on graphite. Phys. Rev. Lett. 48, 177 (1982)CrossRefGoogle Scholar
  7. Evans, H., Tildesley, D.J., Sluckin, T.J.: Boundary effects in the orientational ordering of adsorbed nitrogen. J. Phys. C Solid State Phys. 17, 4907 (1984)CrossRefGoogle Scholar
  8. Golebiowska, M., Firlej, L., Kuchta, B., Fabianski, R.: Structural transformations of nitrogen adsorbed on graphite: Monte Carlo studies of spatial heterogeneity in multilayer system. J. Chem. Phys. 130, 204703 (2009)CrossRefGoogle Scholar
  9. Grillet, Y., Rouquerol, F., Rouquerol, J.: Two-dimensional freezing of nitrogen or argon on differently graphitized carbons. J. Colloid Interface Sci. 70, 239–244 (1979)CrossRefGoogle Scholar
  10. Hansen, F.Y.: Effects on the structure of monolayer and submonolayer fluid nitrogen films by the corrugation in the holding potential of nitrogen molecules. J. Chem. Phys. 115, 1529–1537 (2001)CrossRefGoogle Scholar
  11. Hansen, F.Y., Bruch, L.W.: Molecular-dynamics study of the dynamical excitations in commensurate monolayer films of nitrogen molecules on graphite: a test of the corrugation in the nitrogen-graphite potential. Phys. Rev. B 51, 2515–2536 (1995)CrossRefGoogle Scholar
  12. Hansen, F.Y., Bruch, L.W., Taub, H.: Mechanism of melting in submonolayer films of nitrogen molecules adsorbed on the basal planes of graphite. Phys. Rev. B 52, 8515–8527 (1995)CrossRefGoogle Scholar
  13. Hansen, F.Y., Bruch, L.W., Taub, H.: Molecular-dynamics simulations of the dynamical excitations in commensurate submonolayer films of nitrogen molecules on graphite. Phys. Rev. B 54, 14077 (1996)CrossRefGoogle Scholar
  14. Inaba, A., Shirakami, T., Chihara, H.: Heat capacities of physisorbed films on solids I. Nitrogen and carbon monoxide on graphite. J. Chem. Thermodyn. 23, 461–474 (1991)CrossRefGoogle Scholar
  15. Irving, J.H., Kirkwood, J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817–829 (1950)CrossRefGoogle Scholar
  16. Kuchta, B., Etters, R.D.: Calculated properties of monolayer and multilayer N2 on graphite. Phys. Rev. B 36, 3400–3406 (1987)CrossRefGoogle Scholar
  17. Kuchta, B., Etters, R.D.: On the nature of the orientational transition of monolayer N2 on graphite. J. Chem. Phys. 88, 2793–2799 (1988)CrossRefGoogle Scholar
  18. Marx, D., Sengupta, S., Opitz, O., Nielaba, P., Binder, K.: N2 monolayers physisorbed on graphite: the herringbone transition revisited. Mol. Phys. 83, 31–62 (1994)CrossRefGoogle Scholar
  19. McLachlan, A.D.: Van der Waals forces between an atom and a surface. Mol. Phys. 7, 381–388 (1964)CrossRefGoogle Scholar
  20. Migone, A.D., Kim, H.K., Chan, M.H.W., Talbot, J., Tildesley, D.J., Steele, W.A.: Studies of the orientational ordering transition in nitrogen adsorbed on graphite. Phys. Rev. Lett. 51, 192 (1983)CrossRefGoogle Scholar
  21. Nguyen, V.T., Do, D.D., Nicholson, D.: On the heat of adsorption at layering transitions in adsorption of noble gases and nitrogen on graphite. J. Phys. Chem. C 22171–22180 (2010)Google Scholar
  22. Opitz, O., Marx, D., Sengupta, S., Nielaba, P., Binder, K.: On the order of the herringbone transition of N2 on graphite: a Monte Carlo study. Surf. Sci. 297, L122–L126 (1993)CrossRefGoogle Scholar
  23. Prasetyo, L., Tan, S. (Johnathan), Zeng, Y., Do, D.D., Nicholson, D.: An improved model for N2 adsorption on graphitic adsorbents and graphitized thermal carbon black—the importance of the anisotropy of graphene. J. Chem. Phys. 146, 184702 (2017)Google Scholar
  24. Prigogine, I. (ed.): Surface Properties. Advances in Chemical Physics. Wiley, New York (1996)Google Scholar
  25. Sullivan, N.S., Vaissiere, J.M.: NMR study of the orientational ordering of monolayers of N2 on graphite. Phys. Rev. Lett. 51, 658–661 (1983)CrossRefGoogle Scholar
  26. Talbot, J., Tildesley, D.J., Steele, W.A.: A molecular dynamics simulation of nitrogen adsorbed on graphite. Mol. Phys. 51, 1331–1356 (1984)CrossRefGoogle Scholar
  27. Ustinov, E.A.: Improved modeling of two-dimensional transitions in dense phases on crystalline surfaces. Krypton-graphite system. J. Chem. Phys. 142, 1–11 (2015)CrossRefGoogle Scholar
  28. Ustinov, E.A.: Effect of solid-like nitrogen contact layers on graphite: anisotropy of tangential pressure and orientational order. Adsorption. 22, 425–436 (2016a)CrossRefGoogle Scholar
  29. Ustinov, E.A.: Effect of crystallization and surface potential on the nitrogen adsorption isotherm on graphite: a refined Monte Carlo simulation. Carbon. 100, 52–63 (2016b)CrossRefGoogle Scholar
  30. Ustinov, E.A.: Efficient chemical potential evaluation with kinetic Monte Carlo method and non-uniform external potential: Lennard-Jones fluid, liquid, and solid. J. Chem. Phys. 147, 014105 (2017)CrossRefGoogle Scholar
  31. Ustinov, E.A., Gavrilov, V.Y., Mel’gunov, M.S., Sokolov, V.V., Berveno, V.P., Berveno, A.V.: Effect of crystallization and surface potential on the nitrogen adsorption isotherm on graphite: a refined Monte Carlo simulation. Carbon. 121, 52–63 (2017)CrossRefGoogle Scholar
  32. Ustinov, E., Gorbunov, V., Akimenko, S.: From simulation to thermodynamics of orientational transitions in molecular layers: nitrogen contact layer on solids. J. Phys. Chem. C 122, 2897–2908 (2018)CrossRefGoogle Scholar
  33. van der Hoef, M.A.: Free energy of the Lennard-Jones solid. J. Chem. Phys. 113, 8142 (2000)CrossRefGoogle Scholar
  34. Vernov, A.V., Steele, W.A.: Dynamics of nitrogen molecules adsorbed on graphite by computer simulation. Langmuir. 2, 606–612 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Omsk State Technical UniversityOmskRussian Federation
  2. 2.Ioffe InstituteSt. PetersburgRussian Federation

Personalised recommendations