pp 1–7 | Cite as

Electric field assisted ion adsorption with nanoporous SWCNT electrodes

  • Naoto Tanigaki
  • Katsuyuki Murata
  • Radovan Kukobat
  • Ryusuke Futamura
  • Takuya Hayashi
  • Katsumi KanekoEmail author


The permeable single wall carbon nanotube (SWCNT) film electrodes of high electrical conductivity for filtration of ions are promising for future water treatment technology. The permeable SWCNT film electrodes were obtained by the use of the Zn/Al-based dispersant-aided SWCNT ink. The G band peak position and ID/IG value of Raman spectra do not change before and after the polarization of the SWCNT electrodes, showing the robustness of permeable SWCNT film electrodes. The analysis of N2 adsorption isotherms showed that microporosity and specific surface area of the SWCNT electrodes were larger than those of the pristine SWCNT, due to the debundling of SWCNTs and removal of the caps of SWCNT on the dispersion treatment. Application of the electric voltage above − 3 V to the SWCNT electrodes enhanced markedly the adsorption-mediated permeability of K+ ions, reaching the removability of 90%. The removability dependence of Na+ ions on the initial ion concentration showed that the SWCNT permeation electrodes filter was efficient for diluted Na+ ionic solution. The ions of smaller Stokes radius were adsorbed for the mixed ionic solution of Li+, Na+, K+, Rb+, and Cs+, suggesting that the inner tube space of SWCNT electrodes is important for adsorption of ions.


Ion adsorption Single wall carbon nanotube Permeable electrodes Electric field assistance Electrosorption Water treatment 



This work was supported by Takagi Co., Ltd. and partially supported by the OPERA project from JST.

Supplementary material

10450_2018_9996_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 KB)


  1. Al-Shammiri, M., Safar, M.: Multi-effect distillation plants: State of the art, (1999)Google Scholar
  2. Debye, P., Huckel, E.: The theory of electrolytes I. The lowering of the freezing point and related occurrences. Phys. Zeitschrift. 24, 185–206 (1923)Google Scholar
  3. El-Dessouky, H.T., Ettouney, H.M., Al-Roumi, Y.: Multi-stage flash desalination: present and future outlook. Chem. Eng. J. 73, 173–190 (1999). CrossRefGoogle Scholar
  4. Elimelech, M.: The global challenge for adequate and safe water. J. Water Supply Res. Technol. - AQUA. 55, 3–10 (2006). CrossRefGoogle Scholar
  5. Goh, P.S., Ismail, A.F., Ng, B.C.: Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination. 308, 2–14 (2013). CrossRefGoogle Scholar
  6. Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B., Moulin, P.: Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009). CrossRefPubMedGoogle Scholar
  7. Han, L., Karthikeyan, K.G., Anderson, M.A., Gregory, K.B.: Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization. J. Colloid Interface Sci. 430, 93–99 (2014). CrossRefPubMedGoogle Scholar
  8. Kaneko, K.: Determination of pore size and pore size distribution. J. Memb. Sci. 96, 59–89 (1994). CrossRefGoogle Scholar
  9. Kukobat, R., Minami, D., Hayashi, T., Hattori, Y., Matsuda, T., Sunaga, M., Bharti, B., Asakura, K., Kaneko, K.: Sol-gel chemistry mediated Zn/Al-based complex dispersant for SWCNT in water without foam formation. Carbon 94, 518–523 (2015). CrossRefGoogle Scholar
  10. Kukobat, R., Hayashi, T., Matsuda, T., Sunaga, M., Futamura, R., Sakai, T., Kaneko, K.: Essential role of viscosity of SWCNT inks in homogeneous conducting film formation. Langmuir. 32, 6909–6916 (2016a). Scholar
  11. Kukobat, R., Hayashi, T., Matsuda, T., Sunaga, M., Sakai, T., Futamura, R., Kaneko, K.: Zn/Al complex-SWCNT ink for transparent and conducting homogeneous films by scalable bar coating method. Chem. Phys. Lett. 650, 113–118 (2016b). Scholar
  12. Lee, H.J., Sarfert, F., Strathmann, H., Moon, S.H.: Designing of an electrodialysis desalination plant. Desalination. 142, 267–286 (2002). CrossRefGoogle Scholar
  13. Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C., Sun, Z.: A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. J. Electroanal. Chem. 653, 40–44 (2011). CrossRefGoogle Scholar
  14. Liu, Y.X., Yuan, D.X., Yan, J.M., Li, Q.L., Ouyang, T.: Electrochemical removal of chromium from aqueous solutions using electrodes of stainless steel nets coated with single wall carbon nanotubes. J. Hazard. Mater. 186, 473–480 (2011). CrossRefPubMedGoogle Scholar
  15. Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon. 47, 1617–1628 (2009). CrossRefGoogle Scholar
  16. Nightingale, E.R.: Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63, 1381–1387 (1959). CrossRefGoogle Scholar
  17. Ohkubo, T., Konishi, T., Hattori, Y., Kanoh, H., Fujikawa, T., Kaneko, K.: Restricted hydration structures of Rb and Br ions confined in slit-shaped carbon nanospace. J. Am. Chem. Soc. 124, 11860–11861 (2002). CrossRefPubMedGoogle Scholar
  18. Oren, Y.: Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review). Desalination. 228, 10–29 (2008). CrossRefGoogle Scholar
  19. Setoyama, N., Suzuki, T., Kaneko, K.: Simulation study on the relationship between a high resolution αs-plot and the pore size distribution for activated carbon. Carbon. 36, 1459–1467 (1998). CrossRefGoogle Scholar
  20. Spiegler, K.S., Kedem, O.: Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes. Desalination. 1, 311–326 (1966). CrossRefGoogle Scholar
  21. Sui, Z., Meng, Q., Zhang, X., Ma, R., Cao, B.: Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. J. Mater. Chem. 22, 8767 (2012). CrossRefGoogle Scholar
  22. Welgemoed, T.J., Schutte, C.F.: Capacitive deionization technology™: an alternative desalination solution. Desalination. 183, 327–340 (2005). CrossRefGoogle Scholar
  23. Xu, T., Huang, C.: Electrodialysis-based separation technologies: a critical review. AIChE J. 54, 3147–3159 (2008). CrossRefGoogle Scholar
  24. Yan, C., Zou, L., Short, R.: Single-walled carbon nanotubes and polyaniline composites for capacitive deionization. Desalination. 290, 125–129 (2012). CrossRefGoogle Scholar
  25. Younos, T., Tulou, K.E.: Overview of desalination techniques. J. Contemp. Water Res. Educ. (2005). CrossRefGoogle Scholar
  26. Zhang, D., Yan, T., Shi, L., Peng, Z., Wen, X., Zhang, J.: Enhanced capacitive deionization performance of graphene/carbon nanotube composites. J. Mater. Chem. 22, 14696–14704 (2012). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and System Development, Interdisciplinary Graduate School of Science and TechnologyShinshu UniversityNaganoJapan
  2. 2.TAKAGI Co., LtdKitakyushu CityJapan
  3. 3.Center for Energy and Environmental ScienceShinshu UniversityNaganoJapan
  4. 4.Department of Water Environment and Civil Engineering, Faculty of EngineeringShinshu UniversityNaganoJapan

Personalised recommendations