pp 1–7 | Cite as

Prediction of the sorption coefficient for the adsorption of PAHs on MWCNT based on hybrid QSPR-molecular docking approach

  • Zahra Pahlavan YaliEmail author
  • Mohammad Hossein Fatemi


In this study, quantitative structure–property relationship (QSPR) methodology employed for modeling of the sorption coefficient (log KCNT) of 13 polycyclic aromatic hydrocarbons (PAHs) on multiwall carbon nanotube (MWCNT) adsorbent. A molecular docking simulation used to present a reliable and accurate QSPR model with defining the distance and best orientation of PAHs structures on nano-adsorbent. A genetic algorithm-multiple linear regression method was employed for implementation of QSPR model. In this model, the square of correlation coefficients (R2) was 0.945 and 0.890, and the root mean square errors (RMSE) were 0.08 and 0.18 for the training and test sets, respectively. Also, inspection to selected descriptors indicates the electrostatic and steric parameters of PAHs are the predominant factors responsible on the log KCNT values. These results can be used for prediction of sorption coefficient of other PAHs by MWCNT and modify the surface of the adsorbent for improving the log KCNT.


Quantitative structure–property relationship Molecular docking Polycyclic aromatic hydrocarbon Sorption coefficient MWCNT Genetic algorithm-multiple linear regression 


  1. Agudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Lara, S.R., Silva, L.F.: Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1. 0 of urban environments: carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170 (2017)CrossRefGoogle Scholar
  2. Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112(10), 5073–5091 (2012)CrossRefGoogle Scholar
  3. Ambure, P., Aher, R.B., Gajewicz, A., Puzyn, T., Roy, K.: “NanoBRIDGES” software: open access tools to perform QSAR and nano-QSAR modeling. Chemom. Intell. Lab. Syst. 147, 1–13 (2015)CrossRefGoogle Scholar
  4. Anjum, M., Miandad, R., Waqas, M., Gehany, F., Barakat, M.: Remediation of wastewater using various nano-materials. Arab. J. Chem. (2016). CrossRefGoogle Scholar
  5. Atkinson, A.C.: Plots, Transformations and Regression; An Introduction to Graphical Methods of Diagnostic Regression Analysis. Clarendon Press, Oxford (1985)Google Scholar
  6. Bibby, J., Kent, J., Mardia, K.: Multivariate Analysis. Academic Press, London (1979)Google Scholar
  7. Bjørseth, A.: Handbook of Polycyclic Aromatic Hydrocarbons. Marcel Dekker, New York (1983)Google Scholar
  8. Carpignano, R., Barni, E., Di Modica, G., Grecu, R., Bottaccio, G.: Quantitative relationships between chemical structure and technical properties of 4-aminoazobenzene sulphonic acid dyes. Dyes Pigm. 4(3), 195–211 (1983). CrossRefGoogle Scholar
  9. Chen, C.-H., Huang, C.-C.: Hydrogen adsorption in defective carbon nanotubes. Sep. Purif. Technol. 65(3), 305–310 (2009)CrossRefGoogle Scholar
  10. Chen, C., Wang, X.: Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind. Eng. Chem. Res. 45(26), 9144–9149 (2006)CrossRefGoogle Scholar
  11. Chen, C., Hu, J., Xu, D., Tan, X., Meng, Y., Wang, X.: Surface complexation modeling of Sr (II) and Eu (III) adsorption onto oxidized multiwall carbon nanotubes. J. Colloid Interface Sci. 323(1), 33–41 (2008)CrossRefGoogle Scholar
  12. Chen, C., Wang, X., Nagatsu, M.: Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ. Sci. Technol. 43(7), 2362–2367 (2009)CrossRefGoogle Scholar
  13. Davood, A., Reza Nematollahi, A., Iman, M., Shafiee, A.: Synthesis and docking studies of new 1, 4-dihydropyridines containing 4-(5)-chloro-2-ethyl-5-(4)-imidazolyl substituent as novel calcium channel agonist. Arch. Pharm. Res. 32(4), 481–487 (2009)CrossRefGoogle Scholar
  14. de Oliveira Galvão, M.F., de Oliveira Alves, N., Ferreira, P.A., Caumo, S., de Castro Vasconcellos, P., Artaxo, P., de Souza Hacon, S., Roubicek, D.A., de Medeiros, S.R.B.: Biomass burning particles in the Brazilian Amazon region: mutagenic effects of nitro and oxy-PAHs and assessment of health risks. Environ. Pollut. 233, 960–970 (2018)CrossRefGoogle Scholar
  15. Dumanoglu, Y., Gaga, E.O., Gungormus, E., Sofuoglu, S.C., Odabasi, M.: Spatial and seasonal variations, sources, air-soil exchange, and carcinogenic risk assessment for PAHs and PCBs in air and soil of Kutahya, Turkey, the province of thermal power plants. Sci. Total Environ. 580, 920–935 (2017)CrossRefGoogle Scholar
  16. Durrant, J.D., McCammon, J.A.: BINANA: a novel algorithm for ligand-binding characterization. J. Mol. Graph. Model. 29(6), 888–893 (2011)CrossRefGoogle Scholar
  17. Fatemi, M.H., Gharaghani, S., Mohammadkhani, S., Rezaie, Z.: Prediction of selectivity coefficients of univalent anions for anion-selective electrode using support vector machine. Electrochim. Acta 53(12), 4276–4282 (2008)CrossRefGoogle Scholar
  18. Fatemi, M.H., Heidari, A., Gharaghani, S.: QSAR prediction of HIV-1 protease inhibitory activities using docking derived molecular descriptors. J. Theor. Biol. 369, 13–22 (2015)CrossRefGoogle Scholar
  19. Gaur, A., Shim, M.: Substrate-enhanced O2 adsorption and complexity in the Raman G-band spectra of individual metallic carbon nanotubes. Phys. Rev. B 78(12), 125422 (2008)CrossRefGoogle Scholar
  20. Goering, J., Kadossov, E., Burghaus, U.: Adsorption kinetics of alcohols on single-wall carbon nanotubes: an ultrahigh vacuum surface chemistry study. J. Phys. Chem. C 112(27), 10114–10124 (2008)CrossRefGoogle Scholar
  21. Heidari, A., Fatemi, M.H.: Hybrid docking-nano-QSPR: an alternative approach for prediction of chemicals adsorption on nanoparticles. Nano 11(07), 1650078 (2016)CrossRefGoogle Scholar
  22. Herrera-Herrera, A.V., González-Curbelo, M., Hernández-Borges, J., Rodríguez-Delgado, M.: Carbon nanotubes applications in separation science: a review. Anal. Chim. Acta 734, 1–30 (2012). CrossRefPubMedGoogle Scholar
  23. Huey, R., Morris, G.M.: Using AutoDock 4 with AutoDocktools: A Tutorial, pp. 54–56. The Scripps Research Institute, La Jolla (2008)Google Scholar
  24. HyperChem, H.: Release 7 for windows. HyperCube, Ed (2002)Google Scholar
  25. Hyung, H., Kim, J.-H.: Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ. Sci. Technol. 42(12), 4416–4421 (2008)CrossRefGoogle Scholar
  26. Kah, M., Zhang, X., Jonker, M.T., Hofmann, T.: Measuring and modeling adsorption of PAHs to carbon nanotubes over a six order of magnitude wide concentration range. Environ. Sci. Technol 45(14), 6011–6017 (2011)CrossRefGoogle Scholar
  27. Katritzky, A., Lobanov, V., Karelson, M.: CODESSA: Reference Manual. University of Florida, Gainesville (1994)Google Scholar
  28. Katritzky, A., Lobanov, V., Karelson, M.: CODESSA: Training Manual. University of Florida, Gainesville (1995)Google Scholar
  29. Katritzky, A.R., Kuanar, M., Slavov, S., Hall, C.D., Karelson, M., Kahn, I., Dobchev, D.A.: Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. Chem. Rev. 110(10), 5714–5789 (2010)CrossRefGoogle Scholar
  30. Kayser, H.: Ueber die verdichtung von gasen an oberflächen in ihrer abhängigkeit von druck und temperatur. Annalen der Physik 250(11), 450–468 (1881)CrossRefGoogle Scholar
  31. Khajeh, M., Laurent, S., Dastafkan, K.: Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem. Rev. 113(10), 7728–7768 (2013)CrossRefGoogle Scholar
  32. Kirpichenok, M., Zefirov, N.: Electronegativity and geometry of molecules. 1. principles of developed approach and analysis of the effect of nearest electrostatic interactions on the bond length in organic-molecules. Zhurnal Organicheskoi Khimii 23(4), 673–691 (1987)Google Scholar
  33. Li, Y.-H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., Wei, B.: Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357(3–4), 263–266 (2002)CrossRefGoogle Scholar
  34. Li, Y.-H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D., Wei, B.: Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14), 2787–2792 (2003)CrossRefGoogle Scholar
  35. Liang, X., Liu, S., Wang, S., Guo, Y., Jiang, S.: Carbon-based sorbents: carbon nanotubes. J. Chromatogr. A 1357, 53–67 (2014)CrossRefGoogle Scholar
  36. Liu, Y., Yan, C., Ding, X., Wang, X., Fu, Q., Zhao, Q., Zhang, Y., Duan, Y., Qiu, X., Zheng, M.: Sources and spatial distribution of particulate polycyclic aromatic hydrocarbons in Shanghai, China. Sci. Total Environ. 584, 307–317 (2017)CrossRefGoogle Scholar
  37. Marleau, G., Hebert, A., Roy, R.: A user guide for DRAGON. Version DRAGON_000331 release 3.04. Report IGE-174 Rev 5 (2000)Google Scholar
  38. Masenelli-Varlot, K., McRae, E., Dupont-Pavlovsky, N.: Comparative adsorption of simple molecules on carbon nanotubes: dependence of the adsorption properties on the nanotube morphology. Appl. Surf. Sci. 196(1–4), 209–215 (2002)CrossRefGoogle Scholar
  39. Morris, G., Goodsell, D., Huey, R., Olson, A.: AutoDock Version 2.4. The Scripps Research Institute, Department of Molecular Biology, La Jolla (1998)Google Scholar
  40. Oyibo, J.N., Wegwu, M.O., Uwakwe, A.A., Osuoha, J.O.: Analysis of total petroleum hydrocarbons, polycyclic aromatic hydrocarbons and risk assessment of heavy metals in some selected finfishes at Focados Terminal Delta State. Environ. Nanotechnol. Monit. Manag. (2017). CrossRefGoogle Scholar
  41. Pan, B., Xing, B.: Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42(24), 9005–9013 (2008)CrossRefGoogle Scholar
  42. Qiao, Y., Wei, Z., Feng, J., Chen, Y., Li, P., Wang, W., Ma, Y., Yuan, Z.: Rapid and efficient screening of adsorbent for oligopeptide using molecular docking and isothermal titration calorimetry. J. Sep. Sci. 32(14), 2462–2468 (2009)CrossRefGoogle Scholar
  43. Ren, X., Chen, C., Nagatsu, M., Wang, X.: Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170(2), 395–410 (2011). CrossRefGoogle Scholar
  44. Stine, R.A.: Graphical interpretation of variance inflation factors. Am. Stat. 49(1), 53–56 (1995)Google Scholar
  45. Todeschini, R., Consonni, V., Mauri, A., Pavan, M.: DRAGON-Software for the calculation of molecular descriptors. Web Version 3 (2003)Google Scholar
  46. Yun, Y., Gao, R., Yue, H., Liu, X., Li, G., Sang, N.: Polycyclic aromatic hydrocarbon (PAH)-containing soils from coal gangue stacking areas contribute to epithelial to mesenchymal transition (EMT) modulation on cancer cell metastasis. Sci. Total Environ. 580, 632–640 (2017)CrossRefGoogle Scholar
  47. Zefirov, N., Kirpichenok, M., Ismailov, F., Trofimov, M.: Calculation schemes for atomic electronegativities in molecular graphs within the framework of Sanderson principle. Dokl. Akad. Nauk SSSR 296(4), 883–887 (1987)Google Scholar
  48. Zhang, Y., Wu, B., Xu, H., Liu, H., Wang, M., He, Y., Pan, B.: Nanomaterials-enabled water and wastewater treatment. NanoImpact 3, 22–39 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemometrics Laboratory, Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations