, Volume 24, Issue 8, pp 769–779 | Cite as

On the computer simulations of carbon nanoparticles porosity: statistical mechanics model for CO2 and N2 adsorption isotherms

  • Manel Bergaoui
  • Chadlia Aguir
  • Mohamed KhalfaouiEmail author
  • Jhonny Villarroel-Rocha
  • Laurence Reinert
  • Eduardo Enciso
  • Laurent Duclaux
  • Deicy Barrera
  • Karim Sapag


A new approach model was developed for the pore size characterization of carbon porous materials, using adsorption gases. The experimental adsorption isotherms of CO2 and N2 onto carbon nanoparticles were used to test the validity of such model. The Trimodal-Gauss-Monolayer model has been found to adjust well the experimental data of CO2 sorption at 273 K and has allowed detect the ultra-micropores till 0.7 nm. For the mesopores and macropores, it has been concluded that the N2 sorption isotherms at 77 K are suitable to characterize this kind of porosity. These isotherms have been well fitted with the Gauss-Monolayer/Gauss-Finite Multilayer model derived from the same approach. Thereby, the novel method can be used as a generalized technique for the simulation of type IVa isotherms. Indeed, this novel method agreed with other methods, NLDFT, QSDFT, and VBS available for pore size distribution.


Carbon nanoparticles Pore size distribution Statistical mechanics modeling N2 adsorption/desorption and CO2 adsorption isotherms 



This research has been partially supported by the research project N MAT2015-68394-R from MINECO (Spain).


  1. Barrera, D., Villarroel-Rocha, J., Marenco, L., Oliva, M., Sapag, K.: Non-hydrothermal synthesis of cylindrical mesoporous materials: influence of the surfactant/silica molar ratio. Adsorpt. Sci. Technol. 29, 975–988 (2011)CrossRefGoogle Scholar
  2. Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)CrossRefGoogle Scholar
  3. Barroso-Bujans, F., Palomino, P., Fernandez-Alonso, F., Rudić, S., Alegría, A., Colmenero, J., Enciso, E.: Intercalation and confinement of poly (ethylene oxide) in porous carbon nanoparticles with controlled morphologies. Macromolecules 47, 8729–8737 (2014)CrossRefGoogle Scholar
  4. Bergaoui, M., Khalfaoui, M., Villarroel-Rocha, J., Barrera, D., Al-Muhtaseb, S., Enciso, E., Sapag, K., Ben Lamine, A.: New insights on estimating pore size distribution of latex particles: statistical mechanics approach and modeling. Microporous Mesoporous Mater. 224, 360–371 (2016)CrossRefGoogle Scholar
  5. Chan, L., Cheung, W., Allen, S., McKay, G.: Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon. Chin. J. Chem. Eng. 20, 535–542 (2012)CrossRefGoogle Scholar
  6. Chu, W.C., Chiang, S.F., Li, J.G., Kuo, S.W.: Mesoporous silicas templated by symmetrical multiblock copolymers through evaporation-induced self-assembly. RSC Adv. 4, 784–793 (2014)CrossRefGoogle Scholar
  7. Dollimore, D., Heal, G.: Pore-size distribution in typical adsorbent systems. J. Colloid Interface Sci. 33, 508–519 (1970)CrossRefGoogle Scholar
  8. Garrido, J., Linares-Solano, A., Martin-Martinez, J., Molina-Sabio, M., Rodriguez-Reinoso, F., Torregrosa, R., Use of nitrogen vs. carbon dioxide in the characterization of activated carbons. Langmuir 3, 76–81 (1987)CrossRefGoogle Scholar
  9. Gelb, L.D., Gubbins, K.: Pore size distributions in porous glasses: a computer simulation study. Langmuir 15, 305–308 (1999)CrossRefGoogle Scholar
  10. Gregg, S., Sing, K.: Adsorption, Surface Area and Porosity. Academic Press, New York (1982)Google Scholar
  11. Grehov, V., Kalnacs, J., Mishnev, A., Kundzins, K.: Nitrogen adsorption on graphene sponges synthesized by annealing a mixture of nickel and carbon powders. Latv. J. Phys. Tech. Sci. 54, 36–48 (2017)Google Scholar
  12. Guillet-Nicolas, R., Ahmad, R., Cychosz, K.A., Kleitz, F., Thommes, M.: Insights into the pore structure of KIT-6 and SBA-15 ordered mesoporous silica—recent advances by combining physical adsorption with mercury porosimetry. New J. Chem. 40, 4351–4360 (2016)CrossRefGoogle Scholar
  13. Huang, B., Bartholomew, C.H., Woodfield, B.F.: Improved calculations of pore size distribution for relatively large, irregular slit-shaped mesopore structure. Microporous Mesoporous Mater. 184, 112–121 (2014)CrossRefGoogle Scholar
  14. Jagiello, J., Olivier, J.P.: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70–80 (2013)CrossRefGoogle Scholar
  15. Jagiello, J., Thommes, M.: Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 42, 1227–1232 (2004)CrossRefGoogle Scholar
  16. Jahandar Lashaki, M., Atkinson, J.D., Hashisho, Z., Phillips, J.H., Anderson, J.E., Nichols, M.: The role of beaded activated carbon’s pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors. J. Hazard. Mater. 315, 42–51 (2016)CrossRefGoogle Scholar
  17. Joshi, H.C., Kumar, R., Singh, R.K., Lal, D.: Preparation and characterization of molecular sieving carbon by methane and benzene cracking over activated carbon spheres. Carbon Lett. 8, 12–16 (2007)CrossRefGoogle Scholar
  18. Kakei, K., Ozeki, S., Suzuki, T., Kaneko, K.: Multi-stage micropore filling mechanism of nitrogen on microporous and micrographitic carbons. J. Chem. Soc. Faraday Trans. 86, 371–376 (1990)CrossRefGoogle Scholar
  19. Kaneko, K., Suzuki, T., Kakei, K.: Phase transition of nitrogen molecules filled in micropores of micrographitic carbons. Langmuir 5, 879–881 (1989)CrossRefGoogle Scholar
  20. Kapoor, A., Yang, R.: Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents. Gas Sep. Purif. 3, 187–192 (1989)CrossRefGoogle Scholar
  21. Khalfaoui, M., Knani, S., Hachicha, M., Ben Lamine, A.: New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment. J. Colloid Interface Sci. 263, 350–356 (2003)CrossRefGoogle Scholar
  22. Kruk, M., Jaroniec, M., Sayari, A.: Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267–6273 (1997)CrossRefGoogle Scholar
  23. Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloids Surf. A 437, 3–32 (2013)CrossRefGoogle Scholar
  24. Leo, W.R.: Statistics and the Treatment of Experimental Data, Techniques for Nuclear and Particle Physics Experiments, pp. 81–113. Springer, New York (1994)Google Scholar
  25. Li, Z., Jin, Z., Firoozabadi, A.: Phase behavior and adsorption of pure substances and mixtures and characterization in nanopore structures by density functional theory. SPE J. 19, 1096–1109 (2014)CrossRefGoogle Scholar
  26. Nagaraju, K., Reddy, R., Reddy, N.: A review on protein functionalized carbon nanotubes. J. Appl. Biomater. Funct. Mater. 13, e301–e312 (2015)Google Scholar
  27. Nakai, K., Yoshida, M., Sonoda, J., Nakada, Y., Hakuman, M., Naono, H.: High resolution N2 adsorption isotherms by graphitized carbon black and nongraphitized carbon black—αs-curves, adsorption enthalpies and entropies. J. Colloid Interface Sci. 351, 507–514 (2010)CrossRefGoogle Scholar
  28. Nakhli, A., Khalfaoui, M., Aguir, C., Bergaoui, M., M’henni, M.F., Ben Lamine A.: Statistical physics studies of multilayer adsorption on solid surface: adsorption of basic blue 41 dye onto functionalized Posidonia biomass. Sep. Sci. Technol. 49, 2525–2533 (2014)CrossRefGoogle Scholar
  29. Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617–1628 (2009)CrossRefGoogle Scholar
  30. Nicholson, D.: Simulation of adsorption in model microporous graphite, In: Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., Unger, K.K. (eds.) Studies in Surface Science and Catalysis, pp. 11–20. Elsevier, Amsterdam (1991)Google Scholar
  31. Pekala, R.: Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989)CrossRefGoogle Scholar
  32. Pierce, C.: Computation of pore sizes from physical adsorption data. J. Phys. Chem. 57, 149–152 (1953)CrossRefGoogle Scholar
  33. Prehal, C., Koczwara, C., Jäckel, N., Amenitsch, H., Presser, V., Paris, O.: A carbon nanopore model to quantify structure and kinetics of ion electrosorption with in situ small angle X-ray scattering. Phys. Chem. Chem. Phys. 19, 15549–15561 (2017)CrossRefGoogle Scholar
  34. Przepiórski, J., Czyżewski, A., Pietrzak, R., Toyoda, M., Morawski, A.W.: Porous carbon material containing CaO for acidic gas capture: preparation and properties. J. Hazard. Mater. 263, 353–360 (2013)CrossRefGoogle Scholar
  35. Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16, 2311–2320 (2000)CrossRefGoogle Scholar
  36. Reichhardt, N.V., Guillet-Nicolas, R., Thommes, M., Klösgen, B., Nylander, T., Kleitz, F., Alfredsson, V.: Mapping the location of grafted PNIPAAM in mesoporous SBA-15 silica using gas adsorption analysis. Phys. Chem. Chem. Phys. 14, 5651–5661 (2012)CrossRefGoogle Scholar
  37. Rodriguez-Reinoso, F., Linares-Solano, A.: Chemistry and Physics of Carbon. Marcel Dekker, New York (1988)Google Scholar
  38. Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic Press, London (1999)Google Scholar
  39. Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., Sing, K.S.: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic Press, San Diego (2013)Google Scholar
  40. Seaton, N., Walton, J.: A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 27, 853–861 (1989)CrossRefGoogle Scholar
  41. Seo, M., Kim, S., Oh, J., Kim, S.-J., Hillmyer, M.A.: Hierarchically porous polymers from hyper-cross-linked block polymer precursors. J. Am. Chem. Soc. 137, 600–603 (2015)CrossRefGoogle Scholar
  42. Sevilla, M., Parra, J.B., Fuertes, A.B.: Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons. ACS Appl. Mater. Interfaces 5, 6360–6368 (2013)CrossRefGoogle Scholar
  43. Sing, K.S.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  44. Sun, J.: Pore size distribution model derived from a modified DR equation and simulated pore filling for nitrogen adsorption at 77 K. Carbon 40, 1051–1062 (2002)CrossRefGoogle Scholar
  45. Tan, Z., Gubbins, K.E.: Adsorption in carbon micropores at supercritical temperatures. J. Phys. Chem. 94, 6061–6069 (1990)CrossRefGoogle Scholar
  46. Tao, Y., Endo, M., Kaneko, K.: Hydrophilicity-controlled carbon aerogels with high mesoporosity. J. Am. Chem. Soc. 131, 904–905 (2009)CrossRefGoogle Scholar
  47. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)CrossRefGoogle Scholar
  48. Villarroel-Rocha, J., Barrera, D., Sapag, K.: Improvement in the pore size distribution for ordered mesoporous materials with cylindrical and spherical pores using the Kelvin equation. Top. Catal. 54, 121–134 (2011)CrossRefGoogle Scholar
  49. Villarroel-Rocha, J., Barrera, D., Sapag, K.: Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination. Microporous Mesoporous Mater. 200, 68–78 (2014)CrossRefGoogle Scholar
  50. Wongkoblap, A., Intomya, W., Somrup, W., Charoensuk, S., Junpirom, S., Tangsathitkulchai, C.: Pore size distribution of carbon with different probe molecules. Eng. J. 14, 45–56 (2010)CrossRefGoogle Scholar
  51. Zeller, M., Lorrmann, V., Reichenauer, G., Wiener, M., Pflaum, J.: Relationship between structural properties and electrochemical characteristics of monolithic carbon xerogel-based electrochemical double-layer electrodes in aqueous and organic electrolytes. Adv. Energy Mater. 2, 598–605 (2012)CrossRefGoogle Scholar
  52. Zhang, B., Xing, Y., Li, Z., Zhou, H., Mu, Q., Yan, B.: Functionalized carbon nanotubes specifically bind to α-chymotrypsin’s catalytic site and regulate its enzymatic function. Nano Lett. 9, 2280–2284 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhang, L., Yang, X., Zhang, F., Long, G., Zhang, T., Leng, K., Zhang, Y., Huang, Y., Ma, Y., Zhang, M.: Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J. Am. Chem. Soc. 135, 5921–5929 (2013)CrossRefGoogle Scholar
  54. Zhang, X., Gao, B., Creamer, A.E., Cao, C., Li, Y.: Adsorption of VOCs onto engineered carbon materials: a review. J. Hazard. Mater. 338, 102–123 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Manel Bergaoui
    • 1
    • 2
  • Chadlia Aguir
    • 3
  • Mohamed Khalfaoui
    • 1
    • 2
    Email author
  • Jhonny Villarroel-Rocha
    • 4
  • Laurence Reinert
    • 5
  • Eduardo Enciso
    • 6
  • Laurent Duclaux
    • 5
  • Deicy Barrera
    • 4
  • Karim Sapag
    • 4
  1. 1.Department of Technology, Materials Sciences, Microelectronics and Nanotechnologies Research Group, Higher Institute of Computer Sciences and Mathematics of MonastirUniversity of MonastirMonastirTunisia
  2. 2.Physico-Chemical Materials Laboratory LR01ES19, Department of Physics, Faculty of Sciences of MonastirUniversity of MonastirMonastirTunisia
  3. 3.Research Unit of Applied Chemistry and Environment UR13ES63, Faculty of Sciences of MonastirUniversity of MonastirMonastirTunisia
  4. 4.Laboratorio de Solidos Porosos, Instituto de Física AplicadaUniversidad Nacional de San Luis, CONICETSan LuisArgentina
  5. 5.Laboratory of Molecular Chemistry and EnvironmentUniversity Savoie Mont BlancChamberyFrance
  6. 6.Department of Physical Chemistry I, Faculty of Chemical SciencesComplutense UniversityMadridSpain

Personalised recommendations