, Volume 24, Issue 6, pp 585–593 | Cite as

Theoretical study on pure and doped B12N12 fullerenes as thiophene sensor

  • Elham Tazikeh-Lemeski
  • Alireza SoltaniEmail author
  • Mohammad Taghi Baei
  • Masoud Bezi Javan
  • Sahar Moazen Rad


The physisorption and chemisorption of Thiophene (C4H4S) onto the B12N12, B11AlN12, and B11SiN12 fullerenes have been investigated in both gas and solvent environments by means of density functional theory calculation. We found that the higher physisorption of C4H4S in the top site of boron atom of B12N12 fullerene is − 0.14 eV (II), while in the top sites of Si and Al in B11AlN12 and B11SiN12 fullerenes were − 0.58 (VII) and − 1.08 eV (V), respectively. We believe that B11AlN12 fullerene is responsible for the increase of binding energy and reduction of the energy band gap in comparison with B11SiN12 fullerene. This data demonstrates that the increase of charge transfer and dipole moment led to the accretion of binding energy. Therefore, B11AlN12 fullerene will give additional insights of reducing sulfur contents and it also can serve as an adsorbent in the detection of the C4H4S molecule.


Density functional theory Adsorption Fullerene Electronic structure Vibrational frequency 



We thank the clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran.


  1. Abdolahi, N., Aghaei, M., Soltani, A., Azmoodeh, Z., Balakheyli, H., Heidari, F.: Adsorption of celecoxib on B12N12 fullerene: spectroscopic and DFT/TD-DFT study. Spectrochim. Acta A 204, 348–353 (2018)CrossRefGoogle Scholar
  2. Ahmadi Peyghan, A., Hadipour, N., Bagheri, Z.: Effects of Al-doping and doubleantisite defect on the adsorption of HCN on a BC2N nanotube: DFT studies. J. Phys. Chem. C 117, 2427–2432 (2013a)CrossRefGoogle Scholar
  3. Ahmadi Peyghan, A., Baei, M.T., Torabi, P., Hashemian, S.: Adsorption of thiophene on aluminum nitride nanotubes. Phosphorus Sulfur Silicon Relat. Elem. 188, 1172–1177 (2013b)Google Scholar
  4. Ahmadi Peyghan, A., Noei, M., Yourdkhani, S.: Al-doped graphene-like BN nanosheet as a sensor for para-nitrophenol: DFT study. Superlattices Microstruct. 59, 115–122 (2013c)CrossRefGoogle Scholar
  5. Andzelm, J., Kolmel, C.: Incorporation of solvent effects into density functional calculations of molecular energies and geometries. J. Chem. Phys. 103, 9312–9320 (1995)CrossRefGoogle Scholar
  6. Ayub, K.: Are phosphide nano-cages better than nitride nano-cages? A kinetic, thermodynamic and non-linear optical properties study of alkali metal encapsulated X12Y12 nano-cages. J. Mater. Chem. C 4, 10919–10934 (2016)CrossRefGoogle Scholar
  7. Baei, M.T.: Covalent functionalization of Zn12O12 nanocluster with thiophene. J. Clust. Sci. 24, 749–756 (2013a)CrossRefGoogle Scholar
  8. Baei, M.T.: B12N12 sodalite like cage as potential sensor for hydrogen cyanide. Comput. Theor. Chem. 1024, 28–33 (2013b)CrossRefGoogle Scholar
  9. Baei, M.T.: Remove of toxic pyridine from environmental systems by using B12N12 nano-cage. Superlattices Microstruct. 58, 31–37 (2013c)CrossRefGoogle Scholar
  10. Baei, M.T., Hashemian, S., Yourdkhani, S.: Silicon-doping makes the B12N12 insulator to an n or p-semiconductor. Superlattices Microstruct. 60, 437–442 (2013)CrossRefGoogle Scholar
  11. Baei, M.T., Soltani, A., Hashemian, S.: Adsorption properties of hydrazine on pristine and Si-doped Al12N12 nano-cage. Phosphorus Sulfur Silicon Relat. Elem. 191, 702–708 (2016)CrossRefGoogle Scholar
  12. Bahari, A., Jalalinejad, A., Bagheri, M., Amiri, M.: First principles study of electronic and structural properties of single walled zigzag boron nitride nanotubes doped with the elements of group IV. Solid State Commun. 267, 1–5 (2017)CrossRefGoogle Scholar
  13. Bahrami, A., Seidi, S., Baheri, T., Aghamohammadi, M.: A first-principles study on the adsorption behaviour of amphetamine on pristine, P- and Al-doped B12N12 nano-cages. Superlattices Microstruct. 64, 265–273 (2013)CrossRefGoogle Scholar
  14. Becke, A.D., Edgecombe, K.E.: A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990)CrossRefGoogle Scholar
  15. Beheshtian, J., Peyghan, A.A., Bagheri, Z.: Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide. J. Mol. Model. 19(6), 2197–2203 (2013)CrossRefPubMedGoogle Scholar
  16. Bezi Javan, M., Soltani, A., Tazikeh Lemeski, E., Ahmadi, A., Moazen Rad, S.: Interaction of B12N12 nano-cage with cysteine through various functionalities: a DFT study. Superlattices Microstruct. 100, 24–37 (2016a)CrossRefGoogle Scholar
  17. Bezi Javan, M., Soltani, A., Azmoodeh, Z., Abdolahi, N., Gholami, N.: A DFT study on the interaction between 5-fluorouracil and B12N12 nanocluster. RSC Adv. 6, 104513–104521 (2016b)CrossRefGoogle Scholar
  18. Bezverkhyy, I., Ryzhikov, A., Gadacz, G., Bellat, J.-P.: Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO. Catal. Today 130, 199–205 (2008)CrossRefGoogle Scholar
  19. Chen, J., Yang, H., Ring, Z.: HDS kinetics study of dibenzothiophenic compounds in LCO. Catal. Today 98, 227–233 (2004)CrossRefGoogle Scholar
  20. Cheng, P., Zhang, S., Wang, P., Huang, S., Tian, H.: First-principles investigation of thiophene adsorption on Ni13 and Zn@Ni12 nanoclusters. Comput. Theor. Chem. 1020, 136–142 (2013)CrossRefGoogle Scholar
  21. Chigo Anota, E., Cocoletzi, G.H., Garay Tapia, A.M.: Armchair Boron Nitride nanotubes-heterocyclic molecules interactions: a computational description. Open Chem. 13, 734–742 (2015)Google Scholar
  22. Cristol, S., Paul, J.-F., Schovsbo, C., Veilly, E., Payen, E.: DFT study of thiophene adsorption on molybdenum sulfide. J. Catal. 239, 145–153 (2006)CrossRefGoogle Scholar
  23. Denis, P.A., Iribarne, F.: Thiophene adsorption on single wall carbon nanotubes and grapheme. J. Mol. Struct. (Thoechem.) 957, 114–119 (2010)CrossRefGoogle Scholar
  24. Esrafili, M.D., Nurazar, R.: A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage. Superlattices Microstruct. 67, 54–60 (2014)CrossRefGoogle Scholar
  25. Esrafili, M.D., Saeidi, N., Nematollahi, P.: Can Si-embedded boron nitride nanotubes act as a favorable metal-free catalyst for CO oxidation by N2O? RSC Adv. 5, 100290–100298 (2015)CrossRefGoogle Scholar
  26. Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., et al.: Gaussian 03, revision D. 01. Gaussian Inc, Wallingford, CT (2004)Google Scholar
  27. GaussView 4.1.2, Gaussian Inc., Wallingford, CT (2004)Google Scholar
  28. Golberg, D., Bando, Y., Ste´phan, O., Kurashima, K.: Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett. 73, 2441–2443 (1998)CrossRefGoogle Scholar
  29. Guerini, S., Kar, T., Piquini, P.: Theoretical study of Si impurities in BN nanotubes. Eur. Phys. J. B 38, 515–518 (2004)CrossRefGoogle Scholar
  30. Joshi, Y.V., Ghosh, P., Venkataraman, P.S., Delgass, W.N., Thomson, K.T.: J. Phys. Chem. C 113, 9698–9709 (2009)CrossRefGoogle Scholar
  31. Karttunen, A.J., Linnolahti, M., Pakkanen, T.A.: Structural characteristics of perhydrogenated boron nitride fullerenes. J. Phys. Chem. C 112, 10032–10037 (2008)CrossRefGoogle Scholar
  32. Lin, S., Ye, X., Huang, J.: Can metal-free silicon-doped hexagonal boron nitride nanosheets and nanotubes exhibit activity toward CO oxidation? Phys. Chem. Chem. Phys. 17, 888–895 (2015)CrossRefPubMedGoogle Scholar
  33. Liu, D., Li, Z., Sun, Q., Kong, X., Zhao, A., Wang, Z.: In situ FT-IR study of thiophene adsorbed on the surface of sulfided Mo catalysts. Fuel 92, 77–83 (2012)CrossRefGoogle Scholar
  34. Lu, X., Xu, X., Wang, N., Zhang, Q., Lin, M.C.: Chemisorption and decomposition of thiophene and furan on the Si(100)-2*1 surface: a quantum chemical study. J. Phys. Chem. B 105, 10069–10075 (2001)CrossRefGoogle Scholar
  35. Nogueira, A.F., Lomba, B.S., Soto-Ovideo, M.A., Duarte Correia, C.R., Corio, P., Furtado, C.A., Hummelgen, I.A.: Polymer solar cells using single-wall carbon nanotubes modified with thiophene pedant groups. J. Phys. Chem. C 111, 18431–18438 (2007)CrossRefGoogle Scholar
  36. Oku, T., Hirano, T., Kuno, M., Kusunose, T., Niihare, K., Suganuma, K.: Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials. Mater. Sci. Eng. B 74, 206–217 (2000)CrossRefGoogle Scholar
  37. Oku, T., Kuno, M., Kitahara, H., Nartia, I.: Formation, atomic structures, and properties of boron nitride and carbon nanocage fullerene materials. Int. J. Inorg. Mater. 3, 597–612 (2001)CrossRefGoogle Scholar
  38. Oku, T., Nishiwaki, A., Narita, I.: Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation. Sci. Technol. Adv. Mater. 5, 635–638 (2004)CrossRefGoogle Scholar
  39. Paine, R.T., Narula, C.K.: Synthetic routes to boron nitride. Chem. Rev. 90, 73–91 (1990)CrossRefGoogle Scholar
  40. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997)CrossRefGoogle Scholar
  41. Rastegar, S.F., Ahmadi Peyghan, A., Hadipour, N.L.: Response of Si- and Al-doped graphenes toward HCN: a computational study. Appl. Surf. Sci. 265, 412–417 (2013)CrossRefGoogle Scholar
  42. Ryzhikov, A., Bezverkhyy, I., Bellat, J.-P.: Reactive adsorption of thiophene on Ni/ZnO: role of hydrogen pretreatment and nature of the rate determining step. Appl. Catal. B 84, 766–772 (2008)CrossRefGoogle Scholar
  43. Saikia, N., Deka, R.C.: Theoretical study on pyrazinamide adsorption onto covalently functionalized (5,5) metallic single-walled carbon nanotube. Chem. Phys. Lett. 500, 65–70 (2010)CrossRefGoogle Scholar
  44. Samanta, S.K., Gomathi, A., Bhattacharya, S., Rao, C.N.R.: Novel nanocomposites made of boron nitride nanotubes and a physical gel. Langmuir 26(14), 12230–12236 (2010)CrossRefPubMedGoogle Scholar
  45. Shokuhi Rad, A., Ayub, K.: Adsorption of pyrrole on Al12N12, Al12P12, B12N12, and B12P12 fullerene-like nano-cages; a first principles study. Vacuum 131, 135–141 (2016a)CrossRefGoogle Scholar
  46. Shokuhi Rad, A., Ayub, K.: A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages. J. Alloys Compd. 762, 161–169 (2016b)CrossRefGoogle Scholar
  47. Shokuhi Rad, A., Ayub, K.: Enhancement in hydrogen molecule adsorption on B12N12 nano-cluster by decoration of nickel. Int. J. Hydrog. Energy 41, 22182–22191 (2016c)CrossRefGoogle Scholar
  48. Soltani, A., Baei, M.T., Tazikeh Lemeski, E., Shahini, M.: Sensitivity of BN nano-cages to caffeine and nicotine molecules. Superlattices Microstruct. 76, 315–325 (2014a)CrossRefGoogle Scholar
  49. Soltani, A., Baei, M.T., Tazikeh Lemeski, E., Allah, A., Pahlevani: The study of SCN adsorption on B12N12 and B16N16 nano-cages. Superlattices Microstruct. 75, 716–724 (2014b)CrossRefGoogle Scholar
  50. Soltani, A., Baei, M.T., Ghasemi, A.S., Tazikeh Lemeski, E., Hosseni Amirabadi K.: Adsorption of cyanogen chloride over Al- and Ga-doped BN nanotubes. Superlattices Microstruct. 75, 564–575 (2014c)CrossRefGoogle Scholar
  51. Soltani, A., Baei, M.T., Mirarab, M., Sheikhi, M., Tazikeh, E., Lemeski: The electronic and structural properties of BN and BP nano-cages interacting with OCN: a DFT study. J. Phys. Chem. Solids 75, 1099–1105 (2014d)CrossRefGoogle Scholar
  52. Soltani, A., Bezi, M., Javan: Carbon monoxide interactions with pure and doped B11XN12 (X = Mg, Ge, Ga) nano-clusters: a theoretical study. RSC Adv. 5, 90621–90631 (2015a)CrossRefGoogle Scholar
  53. Soltani, A., Baei, M.T., Tazikeh Lemeski, E., Kaveh, S., Balakheyli, H.: A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes. J. Phys. Chem. Solids 86, 57–64 (2015b)CrossRefGoogle Scholar
  54. Soltani, A., Sousaraei, A., Bezi Javan, M., Eskandari, M., Balakheyli, H.: Electronic and optical properties of 5-AVA functionalized BN nanoclusters: a DFT study. N. J. Chem. 40, 7018 (2016)CrossRefGoogle Scholar
  55. Soltani, A., Bezi Javan, M., Hoseininezhad-Namin, M.S., Tajabord, N., Tazikeh Lemeski, E., Pourarian, F.: Interaction of hydrogen with Pd- and Co-decorated C24 fullerenes: density functional theory study. Synth. Met. 234, 1–8 (2017)CrossRefGoogle Scholar
  56. Soltani, A., Ramezani Taghartapeh, M., Erfani-Moghadam, V., Bezi Javane, M., Heidari, F., Aghaei, M., Mahon, P.J.: Serine adsorption through different functionalities on the B12N12 and Pt-B12N12 nanocages. Mater. Sci. Eng. C 92, 216–227 (2018a)CrossRefGoogle Scholar
  57. Soltani, A., Bezi Javan, M., Baei, M.T., Azmoodeh, Z.: Adsorption of chemical warfare agents over C24 fullerene: effects of decoration of cobalt. J. Alloys Compd. 735, 2148–2161 (2018b)CrossRefGoogle Scholar
  58. Stephan, O., Bando, Y., Loiseau, A., Willaime, F., Shramchenko, N., Tamiya, T., Sato, T.: Formation of small single-layer and nested BN cages under electron irradiation of nanotubes and bulk material. Appl. Phys. A 67, 107–111 (1998)Google Scholar
  59. Vergara Reyes, H.N., Chigo Anota, E., Castro, M.: C60-like boron carbide and carbon nitride fullerenes: stability and electronic properties obtained by DFT methods. Fuller. Nanotub. Carbon Nanostruct. 26, 52–60 (2018)CrossRefGoogle Scholar
  60. Wang, R., Zhu, R., Zhang, D.: Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chem. Phys. Lett. 467, 131–135 (2008)CrossRefGoogle Scholar
  61. Wang, R., Zhang, D., Liu, Y., Liu, C.: A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide. Nanotechnology 20, 505704(1)–505704(8) (2009)Google Scholar
  62. Wu, Z., Li, C., Wei, Z., Ying, P., Xin, Q.: FT-IR Spectroscopic studies of thiophene adsorption and reactions on Mo2N/γ-Al2O3 catalysts. J. Phys. Chem. B 104, 3237 (2000)CrossRefGoogle Scholar
  63. Wu, H.Y., Fan, X.F., Kuo, J.-L., Deng, W.-Q.: Carbon doped boron nitride cages as competitive candidates for hydrogen storage materials. Chem. Commun. 46, 883–885 (2010)CrossRefGoogle Scholar
  64. Yu, T., Cheng, P., Huang, S., Wang, P., Tian, H.: First-principle investigation of thiophene adsorption on TM (Ni/Co/Mn)-doped (ZnO)15 nanotube. Comput. Theor. Chem. 1057, 15–23 (2015)CrossRefGoogle Scholar
  65. Zhang, Y., Yang, Y., Han, H., Yang, M., Wang, L., Zhang, Y., Jiang, Z., Li, C.: Ultra-deep desulfurization via reactive adsorption on Ni/ZnO: the effect of ZnO particle size on the adsorption performance. Appl. Catal. B 119–120, 13–19 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Elham Tazikeh-Lemeski
    • 1
  • Alireza Soltani
    • 2
    Email author
  • Mohammad Taghi Baei
    • 3
  • Masoud Bezi Javan
    • 4
  • Sahar Moazen Rad
    • 2
  1. 1.Department of Chemistry, Gorgan BranchIslamic Azad UniversityGorganIran
  2. 2.Golestan Rheumatology Research CenterGolestan University of Medical SciencesGorganIran
  3. 3.Department of Chemistry, Azadshahr BranchIslamic Azad UniversityAzadshahrIran
  4. 4.Physics Department, Faculty of SciencesGolestan UniversityGorganIran

Personalised recommendations