Advertisement

Adsorption

, Volume 24, Issue 6, pp 575–583 | Cite as

Transition metals adsorption and conductivity modification in carbon nanotubes: analytical modeling and DFT study

  • Bahar Meshginqalam
  • Sholeh Alaei
Article
  • 27 Downloads

Abstract

In this paper, we investigated the transition metals adsorption effect on the conductivity, density of states and carrier density of carbon nanotubes. We find that the electronic properties of CNTs are modulated in the presence of transition metal molecules. Both quasi-metallic and semiconductor behavior in the presence of Ag and Ti molecules are observed, respectively. The model is developed from tight-binding method, first-principles simulations are based on the density functional theory and non-equilibrium Green’s function method. The results of both approaches are in good agreement with each other. Our study reports the high sensitivity of CNTs to transition metal molecules and suggests that their adsorption on CNTs play significant role in modifying electronic behavior and conductivity of CNTs, so improves their potential for spintronics and sensing applications.

Keywords

Transition metals Carbon nanotubes Adsorption Tight binding method DFT Conductivity 

Notes

Acknowledgements

The authors would like to show their gratitude to the Computational Nanoelectronic Research Group (Cone) at the Faculty of Electrical Engineering, Universiti Teknologi Malaysia, for support to this study under short visit research program.

References

  1. Ahmadi, M.T., Johari, Z., Amin, N.A., Mousavi, S.M., Ismail, R.: Carbon nanotube conductance model in parabolic band structure. In Proceedings of the IEEE International Conference on Semiconductor Electronics (ICSE 2010), Malacca, vol. 82, pp. 256 (2010)Google Scholar
  2. Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002)CrossRefGoogle Scholar
  3. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  4. Bulusheva, L.G., Okotrub, A.V., Romanov, D.A., Tomanek, D.: Electronic structure of (n,0) zigzag carbon nanotubes: cluster and crystal approach. J. Phys. Chem. A 102, 975–981 (1998)CrossRefGoogle Scholar
  5. Chang, S.W., Hazra, J., Amer, M., Kapadia, R., Cronin, S.B.: A comparison of photocurrent mechanisms in quasi-metallic and semiconducting carbon nanotube pn-junctions. ACS Nano 9(12), 11551–11556 (2015)CrossRefGoogle Scholar
  6. Choi, H.J., Ihm, J., Louie, S.G., Cohen, M.L.: Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 84, 2917–2920 (2000)CrossRefGoogle Scholar
  7. Collins, P., Bradley, K., Ishigami, M., Zettl, A.: Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000)CrossRefGoogle Scholar
  8. Crespi, V.H., Cohen, M.L., Rubio, A.: In situ band gap engineering of carbon nanotubes. Phys. Rev. Lett. 79, 2093–2096 (1997)CrossRefGoogle Scholar
  9. Dandeliya, S., Khan, Md.S., Srivastava, A.: Electron transport in ammonia adsorbed functionalized carbon nanotube. J. Nanoelectron. Optoelectron. 13, 3 (2018)CrossRefGoogle Scholar
  10. Datta, S., Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  11. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1996)Google Scholar
  12. Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)CrossRefGoogle Scholar
  13. Gunlycke, D., Areshkin, D., White, C.: Semiconducting graphene nanostrips with edge disorder. Appl. Phys. Lett. 90, 142104:1–142104:3 (2007)CrossRefGoogle Scholar
  14. Inoue, S., Kokabu, T., Matsumura, Y.: Effects of physical and chemical adsorption on the electric conductance of carbon nanotube films. AIP Adv. 8, 015222 (2018)CrossRefGoogle Scholar
  15. Ismail, R.B., Ahmadi, M.T., Anwar, S.: Advanced Nanoelectronics. Taylor & Francis, Boca Raton (2013)Google Scholar
  16. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000)CrossRefGoogle Scholar
  17. Li, Y.F., Zhou, Z., Yu, G.T., Chen, W., Chen, Z.F.: CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J. Phys. Chem. C 114, 6250 (2010)CrossRefGoogle Scholar
  18. Lu, Y.H., Zhou, M., Zhang, C., Feng, Y.P.: Metal-embedded graphene: a possible catalyst with high activity. J. Phys. Chem. C 113, 20156 (2009)CrossRefGoogle Scholar
  19. Lucci, M., Reale, A., Di Carlo, A., Orlanducci, S., Tamburri, E., Terranova, M.L., Davoli, I., Di Natale, C., D’Amico, A., Paolesse, R.: Optimization of a NOx gas sensor based on single walled carbon nanotubes. Sens. Actuators B 118(1–2), 226–231 (2006)CrossRefGoogle Scholar
  20. Meshginqalam, B., Alaei, S.: Investigation of molecular adsorption effect on the electrical properties of CNT-based sensors. IEEE Sens. J. 17, 3776 (2017)CrossRefGoogle Scholar
  21. Novak, J.P., Snow, E.S., Houser, E.J., Park, D., Stepnowski, J.L., McGill, R.A.: Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 83(19), 4026–4028 (2003)CrossRefGoogle Scholar
  22. Perdew, J.P.: Accurate density functional for the energy: real-space cutoff of the gradient expansion for the exchange hole. Phys. Rev. Lett. 55, 1665–1668 (1985)CrossRefGoogle Scholar
  23. Perdew, J.P.: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822 (1986)CrossRefGoogle Scholar
  24. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)CrossRefGoogle Scholar
  25. Perdew, J.P., Wang, Y. (unpublished)Google Scholar
  26. Perdew, J.P., Yue, W.: Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B 33, 8800–8802 (1986)CrossRefGoogle Scholar
  27. Pourasl, A.H., Ahmadi, M.T., Ismail, R., Gharaei, N.: Gas adsorption effect on the graphene nanoribbon band structure and quantum capacitance. Adsorption 23, 767–777 (2017)CrossRefGoogle Scholar
  28. Quang, N.H., Van Trinh, M., Lee, B.-H., Huh, J.-S.: Effect of NH3 gas on the electrical properties of single-walled carbon nanotube bundles. Sens. Actuators B 113(1), 341–346 (2006)CrossRefGoogle Scholar
  29. Rao, C.N.R., Voggu, R.: Charge-transfer with graphene and nanotubes. Materials Today 13, 9 (2010)CrossRefGoogle Scholar
  30. Salaway, R.N., Zhigilei, L.V.: Thermal conductance of carbon nanotube contacts: molecular dynamics simulations and general description of the contact conductance. Phys. Rev. B 94, 014308 (2016)CrossRefGoogle Scholar
  31. Serp, P., Machado, B.: Nanostructures Carbon Materials for Catalysis. Royal Society of Chemistry, Cambridge (2015)Google Scholar
  32. Tombros, T., Jozsa, C., Popinciuc, M., Jonkman, H.J., Wees, B.J.: Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571 (2007)CrossRefGoogle Scholar
  33. Valencia, H., Gil, A., Frapper, G.: Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces: a DFT study and molecular orbital analysis. J. Phys. Chem. C 114, 14141–14153 (2010)CrossRefGoogle Scholar
  34. Wang, D., Yu, Z., McKernan, S., Burke, P.J.: Ultrahigh frequency carbon nanotube transistor based on a single nanotube. IEEE Trans. Nanotechnol. 6, 400–403 (2007)CrossRefGoogle Scholar
  35. Xu, K., Wu, C., Tian, X., Liu, J., Li, M., Zhang, Y., Dong, Z.: Single-walled carbon nanotube-based gas sensors for NO2 detection. Integr. Ferroelectr. 135, 132–137 (2012)CrossRefGoogle Scholar
  36. Yanning, W., Hui, Z., Yinsheng, H., Kaiyin, Z., Rongbao, L.: Transport properties of double-walled carbon nanotubes and carbon boronitride heteronanotubes. Carbon 95, 220–227 (2015)CrossRefGoogle Scholar
  37. Yazyev, O.Y., Katsnelson, M.I.: Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2009)CrossRefGoogle Scholar
  38. Zaporotskova, I.V., Boroznina, N.P., Parkhomenko, Y.N., Kozhitov, L.V.: Carbon nanotubes: sensor properties. A review. Mod. Electron. Mater. 2(4), 95–105 (2016)CrossRefGoogle Scholar
  39. Zhang, J., Boyd, A., Tselev, A., Paranjape, M., Barbara, P.: Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors. Appl. Phys. Lett. 88(12), 123112 (2006)CrossRefGoogle Scholar
  40. Zhou, M., Lu, Y.H., Cai, Y.Q., Zhang, C., Feng, Y.P.: Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors. Nanotechnology 22, 385502 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Urmia BranchIslamic Azad UniversityUrmiaIran
  2. 2.Department of Physics, Urmia BranchIslamic Azad UniversityUrmiaIran

Personalised recommendations