A DFT study of penicillamine adsorption over pure and Al-doped C60 fullerene
- 117 Downloads
Abstract
This study considers the effects of penicillamine adsorption over structural and electronic properties of pure and Al-doped C60 fullerene in the gas phase using density functional theory (DFT) calculations. Our calculations demonstrate that penicillamine is weakly adsorbed on pure C60 fullerene with a binding energy (Eb) of − 0.12 eV by B3LYP and − 0.13 eV by B3PW91 functional. Both electronic and structural properties were explored in terms of dipole moment, binding energies, and frontier molecular orbitals. In contrast to pristine C60, the binding energy of the Al-C60–NH2 complex is much stronger and HOMO–LUMO energy gaps are slightly reduced. The values of global hardness, HOMO–LUMO energy gap, and ionization potential of Al-doped C60–drug (NH2 group) are decreased and cause lowering of stability and increase in reactivity of the complex. Our results suggest that doping may improve drug delivery capacity of C60 fullerene.
Keywords
C60 fullerene Penicillamine Doping DFT AdsorptionReferences
- Abdolhi, N., Soltani, A., Khandan Fadafan, H., Erfani-Moghadam, V., Dehno Khalaji, A., Balakheyli, H.: Preparation, characterization and toxicity evaluation of Co3O4 and NiO-filled multi-walled carbon nanotubes loaded to chitosan. Nano-Struct. Nano-Objects 12, 182–187 (2017)CrossRefGoogle Scholar
- Ahmadi Peyghan, A., Soleymanabadi, H., Moradi, M.: Structural and electronic properties of pyrrolidine-functionalized [60]fullerenes. J. Phys. Chem. 74, 1594–1598 (2013a)Google Scholar
- Ahmadi Peyghan, A., Soltani, A., Allah Pahlevani, A., Kanani, Y., Khajeh, S.: A first-principles study of the adsorption behavior of CO on Al-and Ga-doped single-walled BN nanotubes. Appl. Surf. Sci. 270, 25–32 (2013b)CrossRefGoogle Scholar
- Anilkumar, P., Lu, F., Cao, L., Luo, P., Liu, J.H., Sahu, S., Sun, Y.P.: Fullerenes for applications in biology and medicine. Curr. Med. Chem. 18, 2045–2059 (2011)CrossRefPubMedGoogle Scholar
- Baei, M.T., Ramezani Taghartapeh, M., Soltani, A., Hosseni, K., Amirabadi, N., Gholami: Interaction of pure and metal atom substituted carbon nanocages with CNCl: a DFT study. Russ. J. Phys. Chem. B 11, 354–360 (2017a)CrossRefGoogle Scholar
- Baei, M.T., Soltani, A., Rajabzadeh, H., Tazikeh-Lemeski, E.: Structural and electronic properties of XY-doped (AlN, AlP, GaN, GaP) C58 fullerenes: a DFT study. Russ. J. Inorg. Chem. 62, 1067–1076 (2017b)CrossRefGoogle Scholar
- Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
- Beheshtian, J., Peyghan, A.A., Bagheri, Z.: Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens. Actuators B 171, 846–852 (2012)CrossRefGoogle Scholar
- Berger, B., Mader, I., Damjanovic, K., Niesen, W.,D., Stich, O.: Epileptic status immediately after initiation of D-penicillamine therapy in a patient with Wilson’s disease. Clin. Neurol. Neurosurg. 127, 122–124 (2014)CrossRefPubMedGoogle Scholar
- Bernal Texca, F.G., Chigo-Anota, E., Carrillo, L.Tepech, Castro, M.: A DFT study of the electronic and magnetic properties of C36Si24 fullerenes. Comput. Theor. Chem. 1103, 1–10 (2017)CrossRefGoogle Scholar
- Bezi Javan, M., Soltani, A., Azmoodeh, Z., Abdolahi, N., Gholami, N.: A DFT study on the interaction between 5-fluorouracil and B 12 N 12 nanocluster. RSC Adv. 6, 104513–104521 (2016)CrossRefGoogle Scholar
- Bianco, A., Kostarelos, K., Prato, M.: Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005)CrossRefPubMedGoogle Scholar
- Bukkitgar, S.D., Shetti, N.P.: J. Electrochemical behavior of anticancer drug 5-fluorouracil at carbon paste electrode and its analytical application. J. Electroanal. Chem. 7, 1 (2016)Google Scholar
- Cho, K., Wang, X.U., Nie, S., Shin, D.M.: Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–1316 (2008)CrossRefPubMedGoogle Scholar
- Chuang, Y.N., Yao, C.A., Chiu, T.M., Yang, K.C., Lin, Y.M., Hsu, H.C.: d-Penicillamine induced elastosis perforans serpiginosa with involvement of glans penis. DSI 32, 93–96 (2014)Google Scholar
- Daneshmehr, S.: Carbon nanotubes for delivery of quercetin as anticancer drug: theoretical study. Procedia Mater. Sci. 11, 131–136 (2015)CrossRefGoogle Scholar
- De Jong, W.H., Borm, P.J.: Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3, 133 (2008)CrossRefGoogle Scholar
- Dhiman, S., Kumar, R., Dharamvir, K.: Small Al and Ga clusters trapped inside the Bucky-ball (C 6 0)—a DFT study. Int. J. Mod. Phys. 30, 1750092 (2017)CrossRefGoogle Scholar
- Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1996)Google Scholar
- Eslami, M., Moradi, M., Moradi, R.: Theoretical study on the phenylpropanolamine drug interaction with the pristine, Si and Al doped [60] fullerenes. Physica E 87, 186–191 (2017)CrossRefGoogle Scholar
- Evstigneev, M.P., Buchelnikov, A.S., Voronin, D.P., Rubin, Y.V., Belous, L.F., Prylutskyy, Y.I., Ritter, U.: Complexation of C60 fullerene with aromatic drugs. Chem. Phys. Chem. 14, 568–578 (2013)CrossRefPubMedGoogle Scholar
- Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M.: Gaussian 03, Revision C. 02. Gaussian Inc., Wallingford (2004)Google Scholar
- Green, W.H., Gorun, S.M., Fitzgerald, G.: Electronic structures and geometries of C60 anions via density functional calculations. J. Phys. Chem. 100(35), 14892 (1996)CrossRefGoogle Scholar
- Haley, B., Frenke, E.: Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 26, 57–64 (2008)CrossRefPubMedGoogle Scholar
- Hazrati, M.K., Hadipour, N.L.: Adsorption behavior of 5-fluorouracil on pristine, B-, Si-, and Al-doped C60 fullerenes: a first-principles study. Phys. Lett. A 380, 937–941 (2016)CrossRefGoogle Scholar
- Hedberg, K., Hedberg, L., Bethune, D.S., Brown, C.A., Dorn, H.C., Johnson, R.D., Devries, M.: Bond lengths in free molecules of buckminsterfullerene, C60, from gas-phase electron diffraction. Science 254, 410–412 (1992)CrossRefGoogle Scholar
- Khorsand, A., Jamehbozorgi, S., Ghiasi, R., Rezvani, M.: Structural, energetic and electrical properties of encapsulation of penicillamine drug into the CNTs based on vdW-DF perspective. Physica E 72, 120–127 (2015)CrossRefGoogle Scholar
- Kia, M., Golzar, M., Mahjoub, K., Soltani, A.: A first-principles study of functionalized clusters and carbon nanotubes or fullerenes with 5-Aminolevulinic acid as vehicles for drug delivery. Superlatt. Microstruct. 62, 251–259 (2013)CrossRefGoogle Scholar
- Koopmans, T.: Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica 1, 104 (1933)CrossRefGoogle Scholar
- Kraemer, ÂB., Parfitt, G.M., da Silva Acosta, D., Eva Bruch, G., Cordeiro, M.F., Marins, L.F., Ventura-Lima, J., Monserrat, J.M., Barros, D.M.: Fullerene (C60) particle size implications in neurotoxicity following infusion into the hippocampi of Wistar rats. Toxicol. Appl. Pharmacol. 338, 197–203 (2018)CrossRefPubMedGoogle Scholar
- Krainara, N., Illas, F., Limtrakul, J.: Interaction of adenine Cu(II) complexes with BN-doped fullerene differentiates electronically equivalent tautomers. Chem. Phys. Lett. 537, 88–93 (2012)CrossRefGoogle Scholar
- Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
- Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X., Dai, H.: Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652–6660 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
- Mallakpour, S., Zadehnazari, A.: The production of functionalized multiwall carbon nanotube/amino acid-based poly(amide–imide) composites containing a pendant dopamine moiety. Carbon 56, 27–37 (2013)CrossRefGoogle Scholar
- Müller, T., Koppikar, S., Taylor, R.M., Carragher, F., Schlenck, B., Heinz-Erian, P., Kronenberg, F., Ferenci, P., Tanner, S., Siebert, U., Staudinger, R., Mieli-Vergani, G., Dhawan, A.: Re-evaluation of the penicillamine challenge test in the diagnosis of Wilson’s disease in children. J. Hepatol. 47, 270 (2007)CrossRefPubMedGoogle Scholar
- O’Boyle, N.M., Tenderholt, A.L., Langner, K.M.: cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)CrossRefPubMedGoogle Scholar
- Pahuja, A., & Srivastava, S.: DFT study of structural and electronic properties of endohedral complexes of group V atoms with C60. J. Mod. Phys. B 27, 1350152 (2013)CrossRefGoogle Scholar
- Papavasileiou, K.D., Avramopoulos, A., Leonis, G., Papadopoulos, M.G.: Computational investigation of fullerene-DNA interactions: implications of fullerene’s size and functionalization on DNA structure and binding energetics. J. Mol. Graph. Model. 72, 187–200 (2017)CrossRefGoogle Scholar
- Parlaka, C., Alver, Ö: A density functional theory investigation on amantadine drug interaction with pristine and B, Al, Si, Ga, Ge doped C60 fullerenes. Chem. Phys. Lett. 678, 85–90 (2017)CrossRefGoogle Scholar
- Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E.: Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3807 (1978)CrossRefGoogle Scholar
- Parr, R.G., Szentpaly, L., Liu, S.: Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)CrossRefGoogle Scholar
- Pastorin, G.: Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option? Pharmaceut. Res. 26, 746–769 (2009)CrossRefGoogle Scholar
- Patel, D.N., Bailey, S.R.: Nanotechnology in cardiovascular medicine. Cathet. Cardiovasc. Interv. 69, 643–654 (2007)CrossRefGoogle Scholar
- Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007)CrossRefPubMedGoogle Scholar
- Perdew, J.P.: Unified theory of exchange and correlation beyond the local density approximation. In: Ziesche, P., Eschrig, H. (eds.) Electronic Structure of Solids. Akademie Verlag, Berlin (1991)Google Scholar
- Raza, K., Thotakura, N., Kumar, P., Joshi, M., Bhushan, S., Bhatia, A., Katare, O.P.: C60-fullerenes for delivery of docetaxel to breast cancer cells: a promising approach for enhanced efficacy and better pharmacokinetic profile. Int. J. Pharm. 495, 551–559 (2015)CrossRefPubMedGoogle Scholar
- Samanta, P.N., Das, K.K.: Noncovalent interaction assisted fullerene for the transportation of some brain anticancer drugs: a theoretical study. J. Mol. Graph. Model. 72, 187–200 (2017)CrossRefPubMedGoogle Scholar
- Shariatinia, Z., Shahidi, S.: A DFT study on the physical adsorption of cyclophosphamide derivatives on the surface of fullerene C60 nanocage. J. Mol. Graph. Model. 52, 71–81 (2014)CrossRefPubMedGoogle Scholar
- Shaw, C.F.: Gold-based therapeutic agents. Chem. Rev. 99, 2589 (1999)CrossRefGoogle Scholar
- Shojaie, F., Dehghan, M.: Theoretical study of functionalized single-walled carbon nanotube (5, 5) with Mitoxantrone drug. Nanomed. J. 3, 115–126 (2016)Google Scholar
- Soltani, A., Bezi Javan, M.: Carbon monoxide interactions with pure and doped B11XN12 (X = Mg, Ge, Ga) nano-clusters: a theoretical study. RSC Adv. 5, 90621–90631 (2015)CrossRefGoogle Scholar
- Soltani, A., Ghafouri Raz, S., Joveini Rezaei, V., Khalaji, A.D., Savar, M.: Ab initio investigation of Al- and Ga-doped single-walled boron nitride nanotubes as ammonia sensor. Appl. Surf. Sci. A 263, 619–625 (2012)CrossRefGoogle Scholar
- Soltani, A., Baei, M.T., Tazikeh Lemeski, E., Kaveh, S., Balakheyli, H.: A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes. J. Phys. Chem. Solid 86, 57–64 (2015)CrossRefGoogle Scholar
- Soltani, A., Bezi Javan, M., Azmoodeh, Z., Baei, M.T.: Adsorption of chemical warfare agents over C24 fullerene: effects of decoration of cobalt. J. Alloys Compd. 735, 2148–2161 (2018)CrossRefGoogle Scholar
- Suliman, F.O., Al-Nafai, I., Al-Busafi, S.N.: Synthesis, characterization and DFT calculation of 4-fluorophenyl substituted tris(8-hydroxyquinoline)aluminum(III) complexes. Spectrochim. Acta A 118, 66–72 (2014)CrossRefGoogle Scholar
- Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., Xia, Y.: Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 53, 12320–12364 (2014)Google Scholar
- Wong, B.S., Yoong, S.L., Jagusiak, A., Panczyk, T., Ho, H.K., Ang, W.H., Pastorin, G.: Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 65, 1964–2015 (2013)CrossRefPubMedGoogle Scholar
- Xu, D., Liu, M., Huang, Q., Chen, J., Huang, H., Deng, F., Tian, J., Wen, Y., Zhang, X., Wei, Y.: A novel method for the preparation of fluorescent C60 poly(amino acid) composites and their biological imaging. J. Colloid Interface Sci. 516, 392–397 (2018)CrossRefPubMedGoogle Scholar
- Zare, K., Shadmani, N., Pournamdari, E.: DFT/NBO study of nanotube and Calixarene with anti-cancer drug. J. Nanostruct. Chem. 3, 1–6 (2013)Google Scholar