Advertisement

Adsorption

, Volume 24, Issue 5, pp 471–480 | Cite as

A DFT study of penicillamine adsorption over pure and Al-doped C60 fullerene

  • Ashraf Sadat Ghasemi
  • Farideh Mashhadban
  • Fatemeh Ravari
Article

Abstract

This study considers the effects of penicillamine adsorption over structural and electronic properties of pure and Al-doped C60 fullerene in the gas phase using density functional theory (DFT) calculations. Our calculations demonstrate that penicillamine is weakly adsorbed on pure C60 fullerene with a binding energy (Eb) of − 0.12 eV by B3LYP and − 0.13 eV by B3PW91 functional. Both electronic and structural properties were explored in terms of dipole moment, binding energies, and frontier molecular orbitals. In contrast to pristine C60, the binding energy of the Al-C60–NH2 complex is much stronger and HOMO–LUMO energy gaps are slightly reduced. The values of global hardness, HOMO–LUMO energy gap, and ionization potential of Al-doped C60–drug (NH2 group) are decreased and cause lowering of stability and increase in reactivity of the complex. Our results suggest that doping may improve drug delivery capacity of C60 fullerene.

Keywords

C60 fullerene Penicillamine Doping DFT Adsorption 

References

  1. Abdolhi, N., Soltani, A., Khandan Fadafan, H., Erfani-Moghadam, V., Dehno Khalaji, A., Balakheyli, H.: Preparation, characterization and toxicity evaluation of Co3O4 and NiO-filled multi-walled carbon nanotubes loaded to chitosan. Nano-Struct. Nano-Objects 12, 182–187 (2017)CrossRefGoogle Scholar
  2. Ahmadi Peyghan, A., Soleymanabadi, H., Moradi, M.: Structural and electronic properties of pyrrolidine-functionalized [60]fullerenes. J. Phys. Chem. 74, 1594–1598 (2013a)Google Scholar
  3. Ahmadi Peyghan, A., Soltani, A., Allah Pahlevani, A., Kanani, Y., Khajeh, S.: A first-principles study of the adsorption behavior of CO on Al-and Ga-doped single-walled BN nanotubes. Appl. Surf. Sci. 270, 25–32 (2013b)CrossRefGoogle Scholar
  4. Anilkumar, P., Lu, F., Cao, L., Luo, P., Liu, J.H., Sahu, S., Sun, Y.P.: Fullerenes for applications in biology and medicine. Curr. Med. Chem. 18, 2045–2059 (2011)CrossRefGoogle Scholar
  5. Baei, M.T., Ramezani Taghartapeh, M., Soltani, A., Hosseni, K., Amirabadi, N., Gholami: Interaction of pure and metal atom substituted carbon nanocages with CNCl: a DFT study. Russ. J. Phys. Chem. B 11, 354–360 (2017a)CrossRefGoogle Scholar
  6. Baei, M.T., Soltani, A., Rajabzadeh, H., Tazikeh-Lemeski, E.: Structural and electronic properties of XY-doped (AlN, AlP, GaN, GaP) C58 fullerenes: a DFT study. Russ. J. Inorg. Chem. 62, 1067–1076 (2017b)CrossRefGoogle Scholar
  7. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  8. Beheshtian, J., Peyghan, A.A., Bagheri, Z.: Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens. Actuators B 171, 846–852 (2012)CrossRefGoogle Scholar
  9. Berger, B., Mader, I., Damjanovic, K., Niesen, W.,D., Stich, O.: Epileptic status immediately after initiation of D-penicillamine therapy in a patient with Wilson’s disease. Clin. Neurol. Neurosurg. 127, 122–124 (2014)CrossRefGoogle Scholar
  10. Bernal Texca, F.G., Chigo-Anota, E., Carrillo, L.Tepech, Castro, M.: A DFT study of the electronic and magnetic properties of C36Si24 fullerenes. Comput. Theor. Chem. 1103, 1–10 (2017)CrossRefGoogle Scholar
  11. Bezi Javan, M., Soltani, A., Azmoodeh, Z., Abdolahi, N., Gholami, N.: A DFT study on the interaction between 5-fluorouracil and B 12 N 12 nanocluster. RSC Adv. 6, 104513–104521 (2016)CrossRefGoogle Scholar
  12. Bianco, A., Kostarelos, K., Prato, M.: Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005)CrossRefGoogle Scholar
  13. Bukkitgar, S.D., Shetti, N.P.: J. Electrochemical behavior of anticancer drug 5-fluorouracil at carbon paste electrode and its analytical application. J. Electroanal. Chem. 7, 1 (2016)Google Scholar
  14. Cho, K., Wang, X.U., Nie, S., Shin, D.M.: Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–1316 (2008)CrossRefGoogle Scholar
  15. Chuang, Y.N., Yao, C.A., Chiu, T.M., Yang, K.C., Lin, Y.M., Hsu, H.C.: d-Penicillamine induced elastosis perforans serpiginosa with involvement of glans penis. DSI 32, 93–96 (2014)Google Scholar
  16. Daneshmehr, S.: Carbon nanotubes for delivery of quercetin as anticancer drug: theoretical study. Procedia Mater. Sci. 11, 131–136 (2015)CrossRefGoogle Scholar
  17. De Jong, W.H., Borm, P.J.: Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3, 133 (2008)CrossRefGoogle Scholar
  18. Dhiman, S., Kumar, R., Dharamvir, K.: Small Al and Ga clusters trapped inside the Bucky-ball (C 6 0)—a DFT study. Int. J. Mod. Phys. 30, 1750092 (2017)CrossRefGoogle Scholar
  19. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1996)Google Scholar
  20. Eslami, M., Moradi, M., Moradi, R.: Theoretical study on the phenylpropanolamine drug interaction with the pristine, Si and Al doped [60] fullerenes. Physica E 87, 186–191 (2017)CrossRefGoogle Scholar
  21. Evstigneev, M.P., Buchelnikov, A.S., Voronin, D.P., Rubin, Y.V., Belous, L.F., Prylutskyy, Y.I., Ritter, U.: Complexation of C60 fullerene with aromatic drugs. Chem. Phys. Chem. 14, 568–578 (2013)CrossRefGoogle Scholar
  22. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M.: Gaussian 03, Revision C. 02. Gaussian Inc., Wallingford (2004)Google Scholar
  23. Green, W.H., Gorun, S.M., Fitzgerald, G.: Electronic structures and geometries of C60 anions via density functional calculations. J. Phys. Chem. 100(35), 14892 (1996)CrossRefGoogle Scholar
  24. Haley, B., Frenke, E.: Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 26, 57–64 (2008)CrossRefGoogle Scholar
  25. Hazrati, M.K., Hadipour, N.L.: Adsorption behavior of 5-fluorouracil on pristine, B-, Si-, and Al-doped C60 fullerenes: a first-principles study. Phys. Lett. A 380, 937–941 (2016)CrossRefGoogle Scholar
  26. Hedberg, K., Hedberg, L., Bethune, D.S., Brown, C.A., Dorn, H.C., Johnson, R.D., Devries, M.: Bond lengths in free molecules of buckminsterfullerene, C60, from gas-phase electron diffraction. Science 254, 410–412 (1992)CrossRefGoogle Scholar
  27. Khorsand, A., Jamehbozorgi, S., Ghiasi, R., Rezvani, M.: Structural, energetic and electrical properties of encapsulation of penicillamine drug into the CNTs based on vdW-DF perspective. Physica E 72, 120–127 (2015)CrossRefGoogle Scholar
  28. Kia, M., Golzar, M., Mahjoub, K., Soltani, A.: A first-principles study of functionalized clusters and carbon nanotubes or fullerenes with 5-Aminolevulinic acid as vehicles for drug delivery. Superlatt. Microstruct. 62, 251–259 (2013)CrossRefGoogle Scholar
  29. Koopmans, T.: Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica 1, 104 (1933)CrossRefGoogle Scholar
  30. Kraemer, ÂB., Parfitt, G.M., da Silva Acosta, D., Eva Bruch, G., Cordeiro, M.F., Marins, L.F., Ventura-Lima, J., Monserrat, J.M., Barros, D.M.: Fullerene (C60) particle size implications in neurotoxicity following infusion into the hippocampi of Wistar rats. Toxicol. Appl. Pharmacol. 338, 197–203 (2018)CrossRefGoogle Scholar
  31. Krainara, N., Illas, F., Limtrakul, J.: Interaction of adenine Cu(II) complexes with BN-doped fullerene differentiates electronically equivalent tautomers. Chem. Phys. Lett. 537, 88–93 (2012)CrossRefGoogle Scholar
  32. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  33. Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X., Dai, H.: Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652–6660 (2008)CrossRefGoogle Scholar
  34. Mallakpour, S., Zadehnazari, A.: The production of functionalized multiwall carbon nanotube/amino acid-based poly(amide–imide) composites containing a pendant dopamine moiety. Carbon 56, 27–37 (2013)CrossRefGoogle Scholar
  35. Müller, T., Koppikar, S., Taylor, R.M., Carragher, F., Schlenck, B., Heinz-Erian, P., Kronenberg, F., Ferenci, P., Tanner, S., Siebert, U., Staudinger, R., Mieli-Vergani, G., Dhawan, A.: Re-evaluation of the penicillamine challenge test in the diagnosis of Wilson’s disease in children. J. Hepatol. 47, 270 (2007)CrossRefGoogle Scholar
  36. O’Boyle, N.M., Tenderholt, A.L., Langner, K.M.: cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)CrossRefGoogle Scholar
  37. Pahuja, A., & Srivastava, S.: DFT study of structural and electronic properties of endohedral complexes of group V atoms with C60. J. Mod. Phys. B 27, 1350152 (2013)CrossRefGoogle Scholar
  38. Papavasileiou, K.D., Avramopoulos, A., Leonis, G., Papadopoulos, M.G.: Computational investigation of fullerene-DNA interactions: implications of fullerene’s size and functionalization on DNA structure and binding energetics. J. Mol. Graph. Model. 72, 187–200 (2017)CrossRefGoogle Scholar
  39. Parlaka, C., Alver, Ö: A density functional theory investigation on amantadine drug interaction with pristine and B, Al, Si, Ga, Ge doped C60 fullerenes. Chem. Phys. Lett. 678, 85–90 (2017)CrossRefGoogle Scholar
  40. Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E.: Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3807 (1978)CrossRefGoogle Scholar
  41. Parr, R.G., Szentpaly, L., Liu, S.: Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)CrossRefGoogle Scholar
  42. Pastorin, G.: Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option? Pharmaceut. Res. 26, 746–769 (2009)CrossRefGoogle Scholar
  43. Patel, D.N., Bailey, S.R.: Nanotechnology in cardiovascular medicine. Cathet. Cardiovasc. Interv. 69, 643–654 (2007)CrossRefGoogle Scholar
  44. Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007)CrossRefGoogle Scholar
  45. Perdew, J.P.: Unified theory of exchange and correlation beyond the local density approximation. In: Ziesche, P., Eschrig, H. (eds.) Electronic Structure of Solids. Akademie Verlag, Berlin (1991)Google Scholar
  46. Raza, K., Thotakura, N., Kumar, P., Joshi, M., Bhushan, S., Bhatia, A., Katare, O.P.: C60-fullerenes for delivery of docetaxel to breast cancer cells: a promising approach for enhanced efficacy and better pharmacokinetic profile. Int. J. Pharm. 495, 551–559 (2015)CrossRefGoogle Scholar
  47. Samanta, P.N., Das, K.K.: Noncovalent interaction assisted fullerene for the transportation of some brain anticancer drugs: a theoretical study. J. Mol. Graph. Model. 72, 187–200 (2017)CrossRefGoogle Scholar
  48. Shariatinia, Z., Shahidi, S.: A DFT study on the physical adsorption of cyclophosphamide derivatives on the surface of fullerene C60 nanocage. J. Mol. Graph. Model. 52, 71–81 (2014)CrossRefGoogle Scholar
  49. Shaw, C.F.: Gold-based therapeutic agents. Chem. Rev. 99, 2589 (1999)CrossRefGoogle Scholar
  50. Shojaie, F., Dehghan, M.: Theoretical study of functionalized single-walled carbon nanotube (5, 5) with Mitoxantrone drug. Nanomed. J. 3, 115–126 (2016)Google Scholar
  51. Soltani, A., Bezi Javan, M.: Carbon monoxide interactions with pure and doped B11XN12 (X = Mg, Ge, Ga) nano-clusters: a theoretical study. RSC Adv. 5, 90621–90631 (2015)CrossRefGoogle Scholar
  52. Soltani, A., Ghafouri Raz, S., Joveini Rezaei, V., Khalaji, A.D., Savar, M.: Ab initio investigation of Al- and Ga-doped single-walled boron nitride nanotubes as ammonia sensor. Appl. Surf. Sci. A 263, 619–625 (2012)CrossRefGoogle Scholar
  53. Soltani, A., Baei, M.T., Tazikeh Lemeski, E., Kaveh, S., Balakheyli, H.: A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes. J. Phys. Chem. Solid 86, 57–64 (2015)CrossRefGoogle Scholar
  54. Soltani, A., Bezi Javan, M., Azmoodeh, Z., Baei, M.T.: Adsorption of chemical warfare agents over C24 fullerene: effects of decoration of cobalt. J. Alloys Compd. 735, 2148–2161 (2018)CrossRefGoogle Scholar
  55. Suliman, F.O., Al-Nafai, I., Al-Busafi, S.N.: Synthesis, characterization and DFT calculation of 4-fluorophenyl substituted tris(8-hydroxyquinoline)aluminum(III) complexes. Spectrochim. Acta A 118, 66–72 (2014)CrossRefGoogle Scholar
  56. Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., Xia, Y.: Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 53, 12320–12364 (2014)Google Scholar
  57. Wong, B.S., Yoong, S.L., Jagusiak, A., Panczyk, T., Ho, H.K., Ang, W.H., Pastorin, G.: Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 65, 1964–2015 (2013)CrossRefGoogle Scholar
  58. Xu, D., Liu, M., Huang, Q., Chen, J., Huang, H., Deng, F., Tian, J., Wen, Y., Zhang, X., Wei, Y.: A novel method for the preparation of fluorescent C60 poly(amino acid) composites and their biological imaging. J. Colloid Interface Sci. 516, 392–397 (2018)CrossRefGoogle Scholar
  59. Zare, K., Shadmani, N., Pournamdari, E.: DFT/NBO study of nanotube and Calixarene with anti-cancer drug. J. Nanostruct. Chem. 3, 1–6 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ashraf Sadat Ghasemi
    • 1
  • Farideh Mashhadban
    • 1
  • Fatemeh Ravari
    • 1
  1. 1.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations