Advertisement

Adsorption

pp 1–14 | Cite as

Zeolite-loaded aerogel as a primary vacuum sorption pump in planetary instruments

  • Mihail P. PetkovEmail author
  • Steven M. Jones
  • Gerald E. Voecks
Article

Abstract

Zeolite-loaded aerogel (ZLA) getters were devised and developed for maintaining vacuum in the Seismic Experience for Interior Structure (SEIS) instrument on the NASA InSight mission to Mars. The ZLA are very lightweight compound materials (~ 0.1 g/cm3) with tunable density and high surface area (~ 500 m2/g), capable of maintaining high vacuum (HV, < 10−3 mbar) for extended periods of time at room temperature without any maintenance or consumption of power. Low temperatures, such as the surface environments on Mars and the icy worlds, enhance the ZLA adsorption by orders of magnitude, extending their capacity to the deep HV range sustainable over multi-year missions. Selective adsorption properties for species of interest can be further enhanced by cation exchange (Na+, Ca2+, Mg2+, Pd2+, etc.) prior to the zeolite incorporation in the material. The sol–gel process was formulated to produce homogeneously dispersed micron-sized zeolite particles embedded in the aerogel matrix. The ZLA liquid precursor can be cast in practically any shape prior to the formation of the solid wet gel, which is then dried supercritically. The resulting mesoporous aerogel network provides excellent molecular transport to the zeolite particles. For particle sensitive instruments such as SEIS, the ZLA adsorbers can be isolated by sub-micron filters without noticeable effects on their performance.

Keywords

InSight mission Seismometer SEIS Planetary instruments Vacuum Sorption pump Getter Zeolite Zeolite-loaded aerogel 

Notes

Acknowledgements

We would like to thank Kenneth Hurst (JPL), Olivier Grosjean, Delphine Faye, Guillaume Rioland (Centre National d’Études Spatiales; CNES) for fruitful discussions, G.R. and D.F. (CNES) for supplying the NaY zeolite pellets, Randal Hatfield (Pacific Surface Science, Inc.) for gas adsorption experiments and William Warner (JPL) for TGA measurements. This paper constitutes InSight Contribution Number 66. This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

References

  1. Barengoltz, J., Moore, S., Soules, D., Voecks, G.: The wide field/planetary camera 2 (WFPC-2) molecular adsorber. JPL Publication 94-001 (1994)Google Scholar
  2. Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)CrossRefGoogle Scholar
  3. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  4. Day, C.-Y., Chang, C.J., Chen, C.-Y.: Phase equilibrium of ethanol + CO2 and Acetone + CO2 at elevated pressures. J. Chem. Eng. Data 41, 839–843 (1996)CrossRefGoogle Scholar
  5. De Raucourt, S., Gabsi, T., Tanguy, N., Mimoun, D., Lognonne, P., Gagnepain-Beyneix, J., Banerdt, W., Tillier, S., Hurst, K.: The VBB SEIS experiment of InSight”, 39th COSPAR scientific assembly. COSPAR Meet. 39, 429 (2012)Google Scholar
  6. Dubinin, M.M., Astakhov, V.A.: Description of adsorption equilibria of vapors on zeolites over wide ranges of temperature and pressure. Adv. Chem. 102, 69–85 (1971)CrossRefGoogle Scholar
  7. Gorbach, A., Stegmaier, M., Eigenberger, G.: Measurement and modeling of water vapor adsorption on zeolite 4A—equilibria and kinetics. Adsorption 10, 29–46 (2004)CrossRefGoogle Scholar
  8. Gun’ko, V.M., Zarko, V.I., Chuikov, B.A., Dudnik, V.V., Ptushinskii, Y.G., Voronin, E.F., Pakhlov, E.M., Chuiko, A.A.: Temperature-programmed desorption of water from fumed silica, titania, silica/titania, and silica/alumina. Int. J. Mass Spectrom. Ion Processes 172, 161179 (1998)Google Scholar
  9. Huey, L.G.: Measurement of trace atmospheric species by chemical ionization mass spectrometry: speciation of reactive nitrogen and future directions. Mass Spectrom. Rev. 26, 166–184 (2007)CrossRefGoogle Scholar
  10. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)CrossRefGoogle Scholar
  11. Laurent, P.H., Abgrall, M., Jentsch, C.H., Lemonde, P., Santarelli, G., Clairon, A., Maksimovic, I., Bize, S., Salomon, C.H., Blonde, D., Vega, J.F., Grosjean, O., Pocard, F., Saccoccio, M., Chaubet, M., Ladiette, N., Guillet, L., Zenone, I., Delaroche, C.H., Sirmain, C.H.: Design of the cold atom PHARAO space clock and initial test results. Appl. Phys. B 84, 683–690 (2006)CrossRefGoogle Scholar
  12. Li, G., Xiao, P., Webley, P.A., Zhang, J., Singh, R.: Competition of CO2/H2O in adsorption based CO2 capture. Energy Proced. 1, 1123–1130 (2009)CrossRefGoogle Scholar
  13. Li, L., Qu, Q., Wang, B., Li, T., Zhao, J., Ji, J., Ren, W., Zhao, X., Ye, M., Yao, Y., Lü, D., Liu, L.: Initial tests of a rubidium space cold atom clock. Chin. Phys. Lett. 3, 063201 (2016)CrossRefGoogle Scholar
  14. Lognonné, P., Johnson, C.L.: Planetary seismology, In: Treatise on Geophysics, 2nd edn, Vol. 10, Elsevier, Oxford, pp. 103–120, (2015)Google Scholar
  15. Mahaffy, P.R., Webster, C.R., Cabane, M., Conrad, P.G., Coll, P., Atreya, S.K., Arvey, R., Barciniak, M., Benna, M., Bleacher, L., Brinckerhoff, W.B., Eigenbrode, J.L., Carignan, D., Cascia, M., Chalmers, R.A., Dworkin, J.P., Errigo, T., Everson, P., Franz, H., Farley, R., Feng, S., Frazier, G., Freissinet, C., Glavin, D.P., Harpold, D.N., Hawk, D., Holmes, V., Johnson, C.S., Jones, A., Jordan, P., Kellogg, J., Lewis, J., Lyness, E., Malespin, C.A., Martin, D.K., Maurer, J., McAdam, A.C., McLennan, D., Nolan, T.J., Noriega, M., Pavlov, A.A., Prats, B., Raaen, E., Sheinman, O., Sheppard, D., Smith, J., Stern, J.C., Tan, F., Trainer, M., Ming, D.W., Morris, R.V., Jones, J., Gundersen, C., Steele, A., Wray, J., Botta, O., Leshin, L.A., Owen, T., Battel, S., Jakosky, B.M., Manning, H., Squyres, S., Navarro-González, R., McKay, C.P., Raulin, F., Sternberg, R., Buch, A., Sorensen, P., Kline-Schoder, R., Coscia, D., Szopa, C., Teinturier, S., Baffes, C., Feldman, J., Flesch, G., Forouhar, S., Garcia, R., Keymeulen, D., Woodward, S., Block, B.P., Arnett, K., Miller, R., Edmonson, C., Gorevan, S., Mumm, E.: The sample analysis at mars investigation and instrument suite. Space Sci. Rev. 170, 401–478 (2012)CrossRefGoogle Scholar
  16. Mahaffy, P.R., Benna, M., King, T., Harpold, D.N., Arvey, R., Barciniak, M., Bendt, M., Carrigan, D., Errigo, T., Holmes, V., Johnson, C.S., Kellogg, J., Kimvilakani, P., Lefavor, M., Hengemihle, J., Jaeger, F., Lyness, E., Maurer, J., Melak, A., Noreiga, F., Noriega, M., Patel, K., Prats, B., Raaen, E., Tan, F., Weidner, E., Gundersen, C., Battel, S., Block, B.P., Arnett, K., Miller, R., Cooper, C., Edmonson, C., Nolan, J.T.: The neutral gas and ion mass spectrometer on the mars atmosphere and volatile evolution mission. Space Sci. Rev. 195, 49–73 (2015)CrossRefGoogle Scholar
  17. Mimoun, D., Lognonné, P., Banerdt, W.B., Hurst, K., Deraucourt, S., Gagnepain-Beyneix, J., Pike, T., Calcutt, S., Bierwirth, M., Roll, R., Zweifel, P., Mance, D., Robert, O., Nébut, T., Tillier, S., Laudet, P., Kerjean, L., Perez, R., Giardini, D., Christenssen, U., Garcia, R.: The InSight SEIS experiment.” In: Lunar and planetary science Conference, Lunar and Planetary Inst. Technical Report 43, 1493 (2012)Google Scholar
  18. Mincov, I., Petkov, M.P., Tsou, P., Troev, T.: Porosity characterization of aerogels using positron annihilation lifetime spectroscopy. J. Non-Cryst. Sol. 350, 253–258 (2004)CrossRefGoogle Scholar
  19. Petkov, M.P., Jones, S.M.: Accurate bulk density determination of irregularly shaped translucent and opaque aerogels. Appl. Phys. Lett. 108, 194104 (2016)CrossRefGoogle Scholar
  20. Petkov, M.P., Soules, D.M.: UHV system for quasistatic characterization of adsorbers for medium vacuum applications. Vacuum 151, 254–260 (2018)CrossRefGoogle Scholar
  21. Petkov, M.P., Jones, S.M., Tsapin, A., Anderson, M.S.: Intrinsic surface areas and bond site concentrations of silica aerogels of different densities. J. Supercrit. Fluids 106, 100–104 (2015)CrossRefGoogle Scholar
  22. Petkov, M.P., Jones, S.M., Voecks, G.E., Hurst, K.J., Grosjean, O., Faye, D., Rioland, G., Sunday, C.M., Bradford, E.M., Warner, W.N., Mennella, J.M., Ferraro, N.W., Gallegos, M., Soules, D.M., Lognonné, P., Banerdt, W.B., Umland, J.W.: Development of the primary sorption pump for the seis seismometer of the InSight mission to mars. Space Sci. Rev. 214, 112 (2018).  https://doi.org/10.1007/s11214-018-0548-8 CrossRefGoogle Scholar
  23. Reichenauer, G., Scherer, G.W.: Nitrogen sorption in aerogels. J. Non-Cryst. Solids 285, 167–174 (2001)CrossRefGoogle Scholar
  24. Richter, D., Lipka, D.: Measurement of the refractive index of silica aerogel in vacuum. Nucl. Instr. Methods Phys. Res. A 513, 635–638 (2003)CrossRefGoogle Scholar
  25. Rioland, G., Jean Daou, T., Faye, D., Patarin, J.: A new generation of MFI-type zeolite pellets with very high mechanical performance for space decontamination. Microporous Mesoporous Mater. 221, 167–174 (2016)CrossRefGoogle Scholar
  26. Tillotson, T.M., Hrubesh, L.W.: Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process. J. Non-Cryst. Solids 145, 44–50 (1992)CrossRefGoogle Scholar
  27. Tjoelker, R.L., Prestage, J.D., Burt, E.A., Chen, P., Chong, Y.J., Chung, S.K., Diener, W., Ely, T., Enzer, D.G., Mojaradi, H., Okino, C., Pauken, M., Robison, D., Swenson, B.L., Tucker, B., Wang, R.: Mercury ion clock for a NASA technology demonstration mission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1034–1043 (2016)CrossRefGoogle Scholar
  28. Waite, J.H. Jr., Lewis, W.S., Kasprzak, W.T., Anicich, V.G., Block, B.P., Cravens, T.E., Fletcher, G.G., Ip, W.-H., Luhmann, J.G., McNutt, R.L., Niemann, H.B., Parejko, J.K., Richards, J.E., Thorpe, R.L., Walter, E.M., Yelle, R.V.: The Cassini ion and neutral mass spectrometer (INMS) investigation. Space Sci. Rev. 114, 113–231 (2004)CrossRefGoogle Scholar
  29. Weitkamp, J.: Zeolites and catalysis. Solid State Ionics 131, 175–188 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations