Advertisement

On the convergence of data assimilation for the one-dimensional shallow water equations with sparse observations

  • N. K.-R. KevlahanEmail author
  • R. Khan
  • B. Protas
Article
  • 3 Downloads

Abstract

The shallow water equations (SWE) are a widely used model for the propagation of surface waves on the oceans. We consider the problem of optimally determining the initial conditions for the one-dimensional SWE in an unbounded domain from a small set of observations of the sea surface height. In the linear case, we prove a theorem that gives sufficient conditions for convergence to the true initial conditions. At least two observation points must be used and at least one pair of observation points must be spaced more closely than half the effective minimum wavelength of the energy spectrum of the initial conditions. This result also applies to the linear wave equation. Our analysis is confirmed by numerical experiments for both the linear and nonlinear SWE data assimilation problems. These results show that convergence rates improve with increasing numbers of observation points and that at least three observation points are required for practically useful results. Better results are obtained for the nonlinear equations provided more than two observation points are used. This paper is a first step towards understanding the conditions for observability of the SWE for small numbers of observation points in more physically realistic settings.

Keywords

Shallow water equations Data assimilation Tsunami 

Mathematics Subject Classification (2010)

35L05 35Q35 35Q93 65M06 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to our colleague S. Alama for his suggestion to use the Fourier transform to analyze the fixed point of the gradient descent algorithm.

References

  1. 1.
    Lacasta, A., Morales-Hernández, M., Burguete, J., Brufau, P., García-Navarro, P.: Calibration of the 1d shallow water equations: a comparison of Monte Carlo and gradient-based optimization methods. J Hydroinformatics 19(2), 282–298 (2003)CrossRefGoogle Scholar
  2. 2.
    Bélanger, E., Vincent, A., Fortin, A.: Data assimilation (4d-VAR) for shallow-water flow: the case of the Chicoutimi river. Vis. Geosci. 8(1), 1–17 (2003)CrossRefGoogle Scholar
  3. 3.
    Berger, M.S.: Nonlinearity and functional analysis. Academic Press (1977)Google Scholar
  4. 4.
    Cobelli, P.J., Petitjeans, P., Maurel, A., Pagneux, V.: Determination of the bottom deformation from space- and time-resolved water wave measurements. J. Fluid Mech. 835, 301–326 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Coron, J.M.: Control and nonlinearity. American Mathematical Society (2007)Google Scholar
  6. 6.
    Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluver, Dordrecht (1996)CrossRefGoogle Scholar
  7. 7.
    Gunzburger, M.D.: Perspectives in flow control and optimization. SIAM (2003)Google Scholar
  8. 8.
    Guo, L., Wang, Z.: Exact boundary observability for nonautonomous quasilinear wave equations. J. Math. Anal. Appl. 364(1), 41–50 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ide, K., Courtier, P., Ghil, M., Lorenc, A.: Unified notation for data assimilation: operational, sequential and variational. J. Meteorol. Soc. Jpn. 75, 181–189 (1997)CrossRefGoogle Scholar
  10. 10.
    John, F.: Partial differential equations. Springer (1982)Google Scholar
  11. 11.
    Kalnay, E.: Atmospheric modeling, data assimilation and predictability. Cambridge University Press (2003)Google Scholar
  12. 12.
    Kevlahan, N.K.R., Dubos, T., Aechtner, M.: Adaptive wavelet simulation of global ocean dynamics using a new Brinkman volume penalization. Geosci. Model Dev. 8(12), 3891–3909 (2015)CrossRefGoogle Scholar
  13. 13.
    Khan, R.: A Data assimilation scheme for the one-dimensional shallow e quations, Master’s thesis, McMaster University (2016)Google Scholar
  14. 14.
    Li, T., Li, D.: Exact boundary observability for 1-D quasilinear wave equations. Math. Method Appl. Sci. 29(13), 1543–1553 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Maeda, T., Obara, K., Shinohara, M., Kanazawa, T., Uehira, K.: Successive estimation of a tsunami wavefield without earthquake source data: a data assimilation approach toward real-time tsunami forecasting. Geophys. Res. Lett. 42 (19), 7923–7932 (2015)CrossRefGoogle Scholar
  16. 16.
    Nocedal, J., Wright, S.: Numerical optimization. Springer (2002)Google Scholar
  17. 17.
    Okada, Y.: Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Amer. 75, 1135–1154 (1985)Google Scholar
  18. 18.
    Pires, C., Miranda, P.M.A.: Tsunami waveform inversion by adjoint methods. J. Geophys. Res.: Oceans 106(C9), 19773–19796 (2001)CrossRefGoogle Scholar
  19. 19.
    Protas, B., Bewley, T., Hagen, G.: A comprehensive framework for the regularization of adjoint analysis in multiscale PDE systems. J. Comput. Phys. 195, 49–89 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Stefanescu, R., Sandu, R., Navon, I.M.: POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation. J. Comput. Phys. 295, 569–595 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Spiteri, R., Ruuth, S.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Stengel, R.F.: Optimal control and estimation. Dover (1994)Google Scholar
  23. 23.
    Steward, J.L., Navon, I.M., Zupanski, M., Karmitsa, N.: Impact of non-smooth observation operators on variational and sequential data assimilation for a limited-area shallow-water equation model. Q. J. R. Meteorol. Soc. 138(663, B), 323–339 (2012)CrossRefGoogle Scholar
  24. 24.
    Tarantola, A.: Inverse problem theory and methods for model parameter estimation. SIAM (2005)Google Scholar
  25. 25.
    Tirupathi, S., Tchrakian, T.T., Zhuk, S., McKenna, S.: Shock capturing data assimilation algorithm for 1d shallow water equations. Adv. Water Resour. 88, 198–210 (2016)CrossRefGoogle Scholar
  26. 26.
    Titov, V., Rabinovich, A., Mofjeld, H., Thomson, R., González, F.: The global reach of the 26 December 2004 Sumatra tsunami. Science 309, 2045–2048 (2005)CrossRefGoogle Scholar
  27. 27.
    Vlasenko, A., Korn, P., Riehme, J., Naumann, U.: Estimation of data assimilation error: a shallow-water model study. Mon. Weather Rev. 142(7), 2502–2520 (2014)CrossRefGoogle Scholar
  28. 28.
    Żabczyk, J.: Mathematical control theory. An introduction birkhȧuser (1995)Google Scholar
  29. 29.
    Zhu, K., Navon, I.M., Zou, X.: Variational data assimilation with a variable resolution finite-element shallow-water equations model. Mon. Weather Rev. 122(5), 946–965 (1994)CrossRefGoogle Scholar
  30. 30.
    Zou, X., Navon, I., Dimet, F.L.: Incomplete observations and control of gravity waves in variational data assimilation. Tellus A: Dynamic meteorology and oceanography 44(4), 273–296 (1992)CrossRefGoogle Scholar
  31. 31.
    Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47(2), 197–243 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMcMaster UniversityHamiltonCanada

Personalised recommendations