Advertisement

Randomized linear algebra for model reduction. Part I: Galerkin methods and error estimation

  • Oleg Balabanov
  • Anthony NouyEmail author
Article

Abstract

We propose a probabilistic way for reducing the cost of classical projection-based model order reduction methods for parameter-dependent linear equations. A reduced order model is here approximated from its random sketch, which is a set of low-dimensional random projections of the reduced approximation space and the spaces of associated residuals. This approach exploits the fact that the residuals associated with approximations in low-dimensional spaces are also contained in low-dimensional spaces. We provide conditions on the dimension of the random sketch for the resulting reduced order model to be quasi-optimal with high probability. Our approach can be used for reducing both complexity and memory requirements. The provided algorithms are well suited for any modern computational environment. Major operations, except solving linear systems of equations, are embarrassingly parallel. Our version of proper orthogonal decomposition can be computed on multiple workstations with a communication cost independent of the dimension of the full order model. The reduced order model can even be constructed in a so-called streaming environment, i.e., under extreme memory constraints. In addition, we provide an efficient way for estimating the error of the reduced order model, which is not only more efficient than the classical approach but is also less sensitive to round-off errors. Finally, the methodology is validated on benchmark problems.

Keywords

Model reduction Reduced basis Proper orthogonal decomposition Random sketching Subspace embedding 

Mathematics Subject Classification (2010)

15B52 35B30 65F99 65N15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Supplementary material

10444_2019_9725_MOESM1_ESM.tex (22 kb)
(TEX 21.9 KB)

References

  1. 1.
    Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ailon, N., Liberty, E.: Fast dimension reduction using Rademacher series on dual bch codes. Discret. Comput. Geom. 42(4), 615 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alla, A., Kutz, J.N.: Randomized model order reduction. tech. report, arXiv:http://arxiv.org/abs/1611.02316 (2016)
  4. 4.
    Baker, C.G., Gallivan, K.A., Dooren, P.V.: Low-rank incremental methods for computing dominant singular subspaces. Linear Algebra Appl. 436(8), 2866–2888 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Balabanov, O., Nouy, A.: Randomized linear algebra for model reduction. Part ii: minimal residual methods and dictionary-based approximation. arXiv:http://arxiv.org/abs/1910.14378 (2019)
  6. 6.
    Bebendorf, M.: Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM J. Numer. Anal. 45(4), 1472–1494 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bebendorf, M.: Hierarchical Matrices. Springer, Berlin (2008)zbMATHGoogle Scholar
  8. 8.
    Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.): Model reduction and approximation: theory and algorithms. SIAM, Philadelphia, PA (2017)Google Scholar
  9. 9.
    Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Boman, E.G., Hendrickson, B., Vavasis, S.: Solving elliptic finite element systems in near-linear time with support preconditioners. SIAM J. Numer. Anal. 46 (6), 3264–3284 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bourgain, J., Lindenstrauss, J., Milman, V.: Approximation of zonoids by zonotopes. Acta Math. 162(1), 73–141 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Boutsidis, C., Gittens, A.: Improved matrix algorithms via the subsampled randomized Hadamard transform. SIAM J. Matrix Anal. Appl. 34(3), 1301–1340 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Braconnier, T., Ferrier, M., Jouhaud, J.-C., Montagnac, M., Sagaut, P.: Towards an adaptive POD/SVD surrogate model for aeronautic design. Comput. Fluids 40(1), 195–209 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Buhr, A., Engwer, C., Ohlberger, M., Rave, S.: A numerically stable a posteriori error estimator for reduced basis approximations of elliptic equations. In: Onate, X.O.E., Huerta, A. (eds.) Proceedings of the 11th World Congress on Computational Mechanics. CIMNE, pp 4094–4102, Barcelona (2014)Google Scholar
  15. 15.
    Buhr, A., Smetana, K.: Randomized local model order reduction. SIAM J. Sci. Comput. 40(4), A2120–A2151 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Casenave, F., Ern, A., Lelièvre, T.: Accurate and online-efficient evaluation of the a posteriori error bound in the reduced basis method. ESAIM: Mathematical Modelling and Numerical Analysis 48(1), 207–229 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Numer. Math. Sci. Comput. (2014)Google Scholar
  18. 18.
    Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Commun. Pure Appl. Math. 64(5), 697–735 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Gross, D., Nesme, V.: Note on sampling without replacing from a finite collection of matrices. arXiv:http://arxiv.org/abs/1001.2738 (2010)
  20. 20.
    Haasdonk, B.: Reduced basis methods for parametrized PDEs – a tutorial introduction for stationary and instationary problems. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation, pp 65–136. SIAM, Philadelphia (2017)CrossRefGoogle Scholar
  21. 21.
    Hackbusch, W.: Hierarchical matrices: algorithms and analysis, vol. 49. Springer, Berlin (2015)zbMATHCrossRefGoogle Scholar
  22. 22.
    Halko, N., Martinsson, P.-G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Hesthaven, J.S., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations, 1st edn. Springer Briefs in Mathematics, Switzerland (2015)zbMATHGoogle Scholar
  24. 24.
    Himpe, C., Leibner, T., Rave, S.: Hierarchical approximate proper orthogonal decomposition. SIAM J. Sci. Comput. 40(5), A3267–A3292 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Hochman, A., Villena, J.F., Polimeridis, A.G., Silveira, L.M., White, J.K., Daniel, L.: Reduced-order models for electromagnetic scattering problems. IEEE Trans. Antennas Propag. 62(6), 3150–3162 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Knezevic, D.J., Peterson, J.W.: A high-performance parallel implementation of the certified reduced basis method. Comput. Methods Appl. Mech. Eng. 200(13), 1455–1466 (2011)zbMATHCrossRefGoogle Scholar
  27. 27.
    Lee, Y.T., Sidford, A.: Efficient accelerated coordinate descent methods and faster algorithms for solving linear systems. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), vol. 00, pp 147–156 (2014)Google Scholar
  28. 28.
    Maday, Y., Nguyen, N.C., Patera, A.T., Pau, S.H.: A general multipurpose interpolation procedure: the magic points. Communications on Pure & Applied Analysis 8(1), 383 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Martinsson, P.-G.: A fast direct solver for a class of elliptic partial differential equations. J. Sci. Comput. 38(3), 316–330 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Oxberry, G.M., Kostova-Vassilevska, T., Arrighi, W., Chand, K.: Limited-memory adaptive snapshot selection for proper orthogonal decomposition. Int. J. Numer. Methods Eng. 109(2), 198–217 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Quarteroni, A., Manzoni, A., Negri, F.: Reduced basis methods for partial differential equations: an introduction, vol. 92. Springer, Berlin (2015)zbMATHGoogle Scholar
  32. 32.
    Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Meth. Eng. 15(3), 229 (2008)zbMATHCrossRefGoogle Scholar
  33. 33.
    Sarlos, T.: Improved approximation algorithms for large matrices via random projections. In: 2006 IEEE 47th annual symposium on foundations of computer science (FOCS), pp 143–152. IEEE (2006)Google Scholar
  34. 34.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. I. coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Tropp, J.A.: Improved analysis of the subsampled randomized Hadamard transform. Adv. Adapt. Data Anal. 3(01n02), 115–126 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Tropp, J.A.: User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12(4), 389–434 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Tropp, J.A., et al.: An introduction to matrix concentration inequalities. Foundations and Trends®;in Machine Learning 8(1-2), 1–230 (2015)zbMATHCrossRefGoogle Scholar
  38. 38.
    Woodruff, D.P., et al.: Sketching as a tool for numerical linear algebra. Foundations and Trends®;in Theoretical Computer Science 10(1–2), 1–157 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. Appl. 31(3), 1382–1411 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Zahm, O., Nouy, A.: Interpolation of inverse operators for preconditioning parameter-dependent equations. SIAM J. Sci. Comput. 38(2), A1044–A1074 (2016)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centrale NantesLMJL, UMR CNRS 6629NantesFrance
  2. 2.Polytechnic University of CataloniaLaCànBarcelonaSpain

Personalised recommendations