Randomized linear algebra for model reduction. Part I: Galerkin methods and error estimation
- 13 Downloads
- 2 Citations
Abstract
We propose a probabilistic way for reducing the cost of classical projection-based model order reduction methods for parameter-dependent linear equations. A reduced order model is here approximated from its random sketch, which is a set of low-dimensional random projections of the reduced approximation space and the spaces of associated residuals. This approach exploits the fact that the residuals associated with approximations in low-dimensional spaces are also contained in low-dimensional spaces. We provide conditions on the dimension of the random sketch for the resulting reduced order model to be quasi-optimal with high probability. Our approach can be used for reducing both complexity and memory requirements. The provided algorithms are well suited for any modern computational environment. Major operations, except solving linear systems of equations, are embarrassingly parallel. Our version of proper orthogonal decomposition can be computed on multiple workstations with a communication cost independent of the dimension of the full order model. The reduced order model can even be constructed in a so-called streaming environment, i.e., under extreme memory constraints. In addition, we provide an efficient way for estimating the error of the reduced order model, which is not only more efficient than the classical approach but is also less sensitive to round-off errors. Finally, the methodology is validated on benchmark problems.
Keywords
Model reduction Reduced basis Proper orthogonal decomposition Random sketching Subspace embeddingMathematics Subject Classification (2010)
15B52 35B30 65F99 65N15Preview
Unable to display preview. Download preview PDF.
Notes
Supplementary material
References
- 1.Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Ailon, N., Liberty, E.: Fast dimension reduction using Rademacher series on dual bch codes. Discret. Comput. Geom. 42(4), 615 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Alla, A., Kutz, J.N.: Randomized model order reduction. tech. report, arXiv:http://arxiv.org/abs/1611.02316 (2016)
- 4.Baker, C.G., Gallivan, K.A., Dooren, P.V.: Low-rank incremental methods for computing dominant singular subspaces. Linear Algebra Appl. 436(8), 2866–2888 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Balabanov, O., Nouy, A.: Randomized linear algebra for model reduction. Part ii: minimal residual methods and dictionary-based approximation. arXiv:http://arxiv.org/abs/1910.14378 (2019)
- 6.Bebendorf, M.: Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM J. Numer. Anal. 45(4), 1472–1494 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Bebendorf, M.: Hierarchical Matrices. Springer, Berlin (2008)zbMATHGoogle Scholar
- 8.Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.): Model reduction and approximation: theory and algorithms. SIAM, Philadelphia, PA (2017)Google Scholar
- 9.Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Boman, E.G., Hendrickson, B., Vavasis, S.: Solving elliptic finite element systems in near-linear time with support preconditioners. SIAM J. Numer. Anal. 46 (6), 3264–3284 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Bourgain, J., Lindenstrauss, J., Milman, V.: Approximation of zonoids by zonotopes. Acta Math. 162(1), 73–141 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Boutsidis, C., Gittens, A.: Improved matrix algorithms via the subsampled randomized Hadamard transform. SIAM J. Matrix Anal. Appl. 34(3), 1301–1340 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Braconnier, T., Ferrier, M., Jouhaud, J.-C., Montagnac, M., Sagaut, P.: Towards an adaptive POD/SVD surrogate model for aeronautic design. Comput. Fluids 40(1), 195–209 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Buhr, A., Engwer, C., Ohlberger, M., Rave, S.: A numerically stable a posteriori error estimator for reduced basis approximations of elliptic equations. In: Onate, X.O.E., Huerta, A. (eds.) Proceedings of the 11th World Congress on Computational Mechanics. CIMNE, pp 4094–4102, Barcelona (2014)Google Scholar
- 15.Buhr, A., Smetana, K.: Randomized local model order reduction. SIAM J. Sci. Comput. 40(4), A2120–A2151 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Casenave, F., Ern, A., Lelièvre, T.: Accurate and online-efficient evaluation of the a posteriori error bound in the reduced basis method. ESAIM: Mathematical Modelling and Numerical Analysis 48(1), 207–229 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Numer. Math. Sci. Comput. (2014)Google Scholar
- 18.Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Commun. Pure Appl. Math. 64(5), 697–735 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Gross, D., Nesme, V.: Note on sampling without replacing from a finite collection of matrices. arXiv:http://arxiv.org/abs/1001.2738 (2010)
- 20.Haasdonk, B.: Reduced basis methods for parametrized PDEs – a tutorial introduction for stationary and instationary problems. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation, pp 65–136. SIAM, Philadelphia (2017)CrossRefGoogle Scholar
- 21.Hackbusch, W.: Hierarchical matrices: algorithms and analysis, vol. 49. Springer, Berlin (2015)zbMATHCrossRefGoogle Scholar
- 22.Halko, N., Martinsson, P.-G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Hesthaven, J.S., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations, 1st edn. Springer Briefs in Mathematics, Switzerland (2015)zbMATHGoogle Scholar
- 24.Himpe, C., Leibner, T., Rave, S.: Hierarchical approximate proper orthogonal decomposition. SIAM J. Sci. Comput. 40(5), A3267–A3292 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Hochman, A., Villena, J.F., Polimeridis, A.G., Silveira, L.M., White, J.K., Daniel, L.: Reduced-order models for electromagnetic scattering problems. IEEE Trans. Antennas Propag. 62(6), 3150–3162 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Knezevic, D.J., Peterson, J.W.: A high-performance parallel implementation of the certified reduced basis method. Comput. Methods Appl. Mech. Eng. 200(13), 1455–1466 (2011)zbMATHCrossRefGoogle Scholar
- 27.Lee, Y.T., Sidford, A.: Efficient accelerated coordinate descent methods and faster algorithms for solving linear systems. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), vol. 00, pp 147–156 (2014)Google Scholar
- 28.Maday, Y., Nguyen, N.C., Patera, A.T., Pau, S.H.: A general multipurpose interpolation procedure: the magic points. Communications on Pure & Applied Analysis 8(1), 383 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Martinsson, P.-G.: A fast direct solver for a class of elliptic partial differential equations. J. Sci. Comput. 38(3), 316–330 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Oxberry, G.M., Kostova-Vassilevska, T., Arrighi, W., Chand, K.: Limited-memory adaptive snapshot selection for proper orthogonal decomposition. Int. J. Numer. Methods Eng. 109(2), 198–217 (2017)MathSciNetCrossRefGoogle Scholar
- 31.Quarteroni, A., Manzoni, A., Negri, F.: Reduced basis methods for partial differential equations: an introduction, vol. 92. Springer, Berlin (2015)zbMATHGoogle Scholar
- 32.Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Meth. Eng. 15(3), 229 (2008)zbMATHCrossRefGoogle Scholar
- 33.Sarlos, T.: Improved approximation algorithms for large matrices via random projections. In: 2006 IEEE 47th annual symposium on foundations of computer science (FOCS), pp 143–152. IEEE (2006)Google Scholar
- 34.Sirovich, L.: Turbulence and the dynamics of coherent structures. I. coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
- 35.Tropp, J.A.: Improved analysis of the subsampled randomized Hadamard transform. Adv. Adapt. Data Anal. 3(01n02), 115–126 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Tropp, J.A.: User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12(4), 389–434 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Tropp, J.A., et al.: An introduction to matrix concentration inequalities. Foundations and Trends®;in Machine Learning 8(1-2), 1–230 (2015)zbMATHCrossRefGoogle Scholar
- 38.Woodruff, D.P., et al.: Sketching as a tool for numerical linear algebra. Foundations and Trends®;in Theoretical Computer Science 10(1–2), 1–157 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. Appl. 31(3), 1382–1411 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.Zahm, O., Nouy, A.: Interpolation of inverse operators for preconditioning parameter-dependent equations. SIAM J. Sci. Comput. 38(2), A1044–A1074 (2016)MathSciNetzbMATHCrossRefGoogle Scholar