Advertisement

Advances in Computational Mathematics

, Volume 45, Issue 2, pp 981–1004 | Cite as

Theoretical and computational analysis of a nonlinear Schrödinger problem with moving boundary

  • Daniele C. R. GomesEmail author
  • Mauro A. Rincon
  • Maria Darci G. da Silva
  • Gladson O. Antunes
Article
  • 48 Downloads

Abstract

In this paper, we investigate some mathematical and numerical aspects of a one-dimensional nonlinear Schrödinger problem defined in a noncylindrical domain. By a change of variable, we transform the original problem into an equivalent one defined in a cylindrical domain. To obtain the existence and uniqueness of the solution, we apply the Faedo-Galerkin method and results of compactness. The numerical simulation is performed by means of the finite element method in the associated space and the finite difference method in the temporal part, to get an approximate numerical solution. In addition, we will make an analysis of the rate of convergence of the applied methods. Finally, we will show that the results of the numerical simulation are in agreement with the theoretical analysis.

Keywords

Nonlinear Schrödinger problem Noncylindrical domain Existence and uniqueness Numerical simulation Newton’s method 

Mathematics Subject Classification (2010)

MSC 35K55 MSC 65M06 MSC 65M60 MSC 35R37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author Rincon, M.A acknowledge the partial support from research fellowship of CNPq, Brazil. We would like to thank Prof. L. A. Medeiros, for the suggestions and collaboration in the development of this work.

References

  1. 1.
    Almeida, R.M.P., Duque, J.C.M., Ferreira, J., Robalo, R.J.: Finite element schemes for a class of nonlocal parabolic systems with moving boundaries. J. Appl. Numer. Math. 127, 226–248 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cannarsa, P., Da Prato, G., Zolesio, J.P.: The damped wave equation in a moving domain. J. Differ. Equ. 85(1), 1–16 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cazenave, T.: Semilinear Schrödinger Equations, vol. 10. AMS, New York (2003)zbMATHGoogle Scholar
  4. 4.
    Ciarlet, F.G.: The Finite Element Method for Elliptic Problems, vol. 40. SIAM, Paris (2002)CrossRefGoogle Scholar
  5. 5.
    Clark, H.R., Rincon, M.A., Rodrigues, R.D.: Beam equation with weak-internal damping in domain with moving boundary. J. Appl. Numer. Math. 47(2), 139–157 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dalfovo, F., Giorgini, S.: Theory of bose-einstein condensation in trapped gases. Rev. Mod. Phys. 71(3), 463–512 (1999)CrossRefGoogle Scholar
  7. 7.
    Hartree, D.: The wave mechanics of an atom with a non-coulomb central field. Part i. Theory and methods. Proc. Camb. Philos. Soc. 24, 89–132 (1968)CrossRefGoogle Scholar
  8. 8.
    Ignat, L.I., Zuazua, E.: Convergence rates for dispersive approximation schemes to nonlinear schrodinger equations. Journal de Mathé,matiques Pures et Appliquées 98(5), 479–517 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Inoue, A.: Sur \(\square {u} + u^{3} = f\) dans un domaine noncylindrique. J. Math. Anal. Appl. 46(3), 777–819 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jina, J., Wu, X.: Analysis of finite element method for one-dimensional time-dependent schrodinger equation on unbounded domain. J. Comput. Appl. Math. 220, 240–256 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kelley, P.L.: Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008 (1965)CrossRefGoogle Scholar
  12. 12.
    Lions, J.L.: Quelques méthodes de résolutions des problémes aux limites non linéaires. Dunod, Paris (1969)zbMATHGoogle Scholar
  13. 13.
    Liu, I.S., Rincon, M.A.: Effect of moving boundaries on the vibrating elastic string. Appl. Numer. Math. 47, 159–172 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Medeiros, L.A., Miranda, M.M.: Contrôllabilité exacte de l’équation de schrodinger dans des domaines non cylindriques. CR Acad. Sci. 319, 685–689 (1994)zbMATHGoogle Scholar
  15. 15.
    Medeiros, L.A., Miranda, M.M.: Exact controllability for schrödinger equations in non cylindrical domains: 41o seminário brasileiro de análise. Rev Mat Apl (1995)Google Scholar
  16. 16.
    Rincon, M.A., Lacerda, M.O.: Error analysis of thermal equation with moving ends. J. Math. Comput. Simul. 80, 2200–2215 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Strecker, K.E., Partridge, G.B., Truscott, A.G., Hulet, R.G.: Bright matter wave solitons in bose-einstein condensates. New J. Phys. 8(73), 1–73 (2003)Google Scholar
  18. 18.
    Thomée, V: Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational mathematics. 2nd edn., vol. 25. Springer, Rio de Janeiro (2006)Google Scholar
  19. 19.
    Wang, T.: Uniform point-wise error estimates of semi-implicit compact finite difference methods for the nonlinear schrodinger equation perturbed by wave operator. J. Comput. Appl. Math. 422, 286–308 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Wheeler, M.F.: A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10(4), 723–759 (1973)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de MatemáticaUniversidade Federal do Rio de JaneiroRJBrazil
  2. 2.Escola de MatemáticaUniversidade Federal do Estado do Rio de JaneiroRJBrazil

Personalised recommendations